Injury of peripheral nerves can trigger neuropathic pain, producing allodynia and hyperalgesia via peripheral and central sensitization. Recent studies have focused on the role of the insular cortex (IC) in neuropathic pain. Because the IC is thought to store pain-related memories, translational regulation in this structure may reveal novel targets for controlling chronic pain. Signaling via mammalian target of rapamycin (mTOR), which is known to control mRNA translation and influence synaptic plasticity, has been studied at the spinal level in neuropathic pain, but its role in the IC under these conditions remains elusive. Therefore, this study was conducted to determine the role of mTOR signaling in neuropathic pain and to assess the potential therapeutic effects of rapamycin, an inhibitor of mTORC1, in the IC of rats with neuropathic pain. Mechanical allodynia was assessed in adult male Sprague-Dawley rats after neuropathic surgery and following microinjections of rapamycin into the IC on postoperative days (PODs) 3 and 7. Optical recording was conducted to observe the neural responses of the IC to peripheral stimulation. Rapamycin reduced mechanical allodynia and downregulated the expression of postsynaptic density protein 95 (PSD95), decreased neural excitability in the IC, thereby inhibiting neuropathic pain-induced synaptic plasticity. These findings suggest that mTOR signaling in the IC may be a critical molecular mechanism modulating neuropathic pain.
New derivatives of tetrakis(4-carboxyphenyl) porphyrin were designed, synthesized and characterized by IR, proton NMR and mass spectroscopy. The ground and excited state nature of new derivatives were examined using UV-Vis. absorption and fluorescence spectroscopy, fluorescence quantum yield and fluorescence lifetime studies. The singlet oxygen quantum yield of each synthesized derivative of porphyrin was estimated for their further efficacy as potential photosensitizer in biological studies. The significant photophysical data of all synthesized derivatives was supplementary accessed to examine the cell imaging and cytotoxicity against two cancer cell lines viz. MBA-MD-231 and A375. The fluorescence lifetime, fluorescence quantum yield and efficiency of singlet oxygen generation suggests alkyl amine and alkyl hydrazide linked new porphyrin photosensitizers can be useful for PDT agent in cancer treatment.
The insular cortex (IC) is associated with important functions linked with pain and emotions. According to recent reports, neural plasticity in the brain including the IC can be induced by nerve injury and may contribute to chronic pain. Continuous active kinase, protein kinase Mζ (PKMζ), has been known to maintain the long-term potentiation. This study was conducted to determine the role of PKMζ in the IC, which may be involved in the modulation of neuropathic pain. Mechanical allodynia test and immunohistochemistry (IHC) of zif268, an activity-dependent transcription factor required for neuronal plasticity, were performed after nerve injury. After ζ-pseudosubstrate inhibitory peptide (ZIP, a selective inhibitor of PKMζ) injection, mechanical allodynia test and immunoblotting of PKMζ, phospho-PKMζ (p-PKMζ), and GluR1 and GluR2 were observed. IHC demonstrated that zif268 expression significantly increased in the IC after nerve injury. Mechanical allodynia was significantly decreased by ZIP microinjection into the IC. The analgesic effect lasted for 12 hours. Moreover, the levels of GluR1, GluR2, and p-PKMζ were decreased after ZIP microinjection. These results suggest that peripheral nerve injury induces neural plasticity related to PKMζ and that ZIP has potential applications for relieving chronic pain.
IntroductionAngiography remains the gold standard for guiding percutaneous coronary intervention (PCI). However, it is prone to suboptimal stent results due to the visual estimation of coronary measurements. Although the benefit of intravascular ultrasound (IVUS)-guided PCI is becoming increasingly recognised, IVUS is not affordable for many catheterisation laboratories. Thus, a more practical and standardised angiography-based approach is necessary to support stent implantation.Methods and analysisThe Quantitative Coronary Angiography versus Intravascular Ultrasound Guidance for Drug-Eluting Stent Implantation trial is a randomised, investigator-initiated, multicentre, open-label, non-inferiority trial comparing the quantitative coronary angiography (QCA)-guided PCI strategy with IVUS-guided PCI in all-comer patients with significant coronary artery disease. A novel, standardised, QCA-based PCI protocol for the QCA-guided group will be provided to all participating operators, while the PCI optimisation criteria will be predefined for both strategies. A total of 1528 patients will be randomised to either group at a 1:1 ratio. The primary endpoint is the 12-month cumulative incidence of target-lesion failure defined as a composite of cardiac death, target-vessel myocardial infarction or ischaemia-driven target-lesion revascularisation. Clinical follow-up assessments are scheduled at 1, 6 and 12 months for all patients enrolled in the study.Ethics and disseminationEthics approval for this study was granted by the Institutional Review Board of Asan Medical Center (no. 2017-0060). Informed consent will be obtained from every participant. The study findings will be published in peer-reviewed journal articles and disseminated through public forums and academic conference presentations. Cost-effectiveness and secondary imaging analyses will be shared in secondary papers.Trial registration numberNCT02978456.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.