When a piezoelectric transformer (PT) is actuated at its second harmonic frequency by a low input voltage, the generated electric field at the distal end can be sufficient to breakdown the surrounding gas, making them attractive power sources for non-equilibrium plasma generation. Understanding the potential and electric fields produced in the surrounding medium by the PT is important for effectively designing and using PT plasma devices. In this work, the spatiotemporally resolved characteristics of the electric field generated by a PT operating in open air have been investigated using the femtosecond electric field-induced second harmonic generation (E-FISH) method. Electric field components were determined by simultaneously conducting E-FISH measurements with the incident laser polarized in two orthogonal directions relative to the PT crystal. Results of this work demonstrate the spatial distribution of electric field around the PT’s output distal end and how it evolves as a function of time. Notably, the strongest electric field appears on the face of the PT’s distal surface, near the top and bottom edges and decreases by approximately 70% over 3 mm. The time delay between the PT’s input voltage and measured electric field indicates that there is an about 0.45 phase difference between the PT’s input voltage and output signal.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.