We demonstrate high-external quantum efficiency (∼50%) solar-blind AlGaN p–n junction photodetectors with high-Al content multiple quantum wells (MQWs). A peak responsivity of 0.1 A/W at 250 nm, which falls >103 by 280 nm, indicates that the optical absorption is dominated by the MQW structures. At a reverse bias of 0.5 V, the dark current is <0.1 pA. The readout RC-limited time response is measured as 0.4 µs, and an achievable detector RC-limited time response of 2 ns is estimated. The devices do not show internal gain, which accounts for their high speed.
We report room-temperature to 200 °C operation of n-Al0.65Ga0.35N channel metal semiconductor field effect transistors (MESFET) grown over high-quality AlN/sapphire templates. For this temperature range, the source-drain currents, threshold voltages, and dc-transconductance values remain nearly unchanged with an estimated field-effect mobility of ∼90 cm2/V-s at 200 °C and currents of >100 mA/mm. The analysis of the temperature dependent current-voltage characteristics of the gate-source Schottky barrier diode reveals that the leakage currents arise from Frenkel-Poole emission. The capacitance-voltage data show no hysteresis, indicating a high quality Schottky barrier interface. These MESFET's have excellent potential for use as a high temperature power electronic or a solar-blind ultraviolet sensing device.
We report on the effect of dry etching and the combination of metal stacks used to form ohmic contacts on silicon-doped high-Al-content (>60%) n-AlGaN layers for deep-ultraviolet light-emitting diodes. The contact characteristics are compared for as-grown and plasma-etched n-AlGaN samples. The Ti/Al/Ti/ Au contacts to as-grown n-AlGaN were linear, with a specific contact resistivity of 5 9 10 À5 X-cm 2 . The same metallic layer combinations yielded nonlinear contacts on the plasma-etched surface of the n-AlGaN layers. However, when Ni was used as the barrier layer instead of titanium, the contacts to plasma-etched AlGaN surfaces became linear, with a specific contact resistivity of 5 9 10 À4 X-cm 2 .
We propose and demonstrate a vertical-cavity surface-emitting laser structure that operates predominantly in the single fundamental transverse mode over a wide operation current range. In this laser structure, a microlens is integrated on top of an otherwise ordinary surface-emitting laser so that a small portion of laser output is fed back into the cavity, forcing the lasing to occur in the fundamental mode. Model calculations reproduce the observed mode selection effect.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.