A new NIR fluorescent sensor based on an amine-substituted heptamethine cyanine dye displayed a highly selective fluorescence enhancement with cyanide in aqueous solutions, and was applied for the imaging of anthropogenic and biogenic cyanide.
A Hg(2+)-selective rhodamine 6G derivative bearing thiolactone moiety was synthesized, and its crystal structure with Hg(2+) is presented to explain the binding mode. In addition, highly selective "off-on"-type fluorescent change upon the addition of Hg(2+) was also applied to bioimaging.
In this study, an assay to quantify the presence of aluminum ions using a salicylimine-based receptor was developed utilizing turn-on fluorescence enhancement. Upon treatment with aluminum ions, the fluorescence of the sensor was enhanced at 510 nm due to formation of a 1:1 complex between the chemosensor and the aluminum ions at room temperature. As the concentration of Al(3+) was increased, the fluorescence gradually increased. Other metal ions, such as Na(+), Ag(+), K(+), Ca(2+), Mg(2+), Hg(2+), Mn(2+), Co(2+), Ni(2+), Cu(2+), Zn(2+), Cd(2+), Pb(2+), Cr(3+), Fe(3+), and In(3+), had no such significant effect on the fluorescence. In addition, we show that the probe could be used to map intracellular Al(3+) distribution in live cells by confocal microscopy.
Among the various anions, only cyanide induced the revival of fluoresecence of -Cu(2+) resulting in "Off-On" type sensing of cyanide, which can be monitored at pH 7.4 in 100% aqueous system, and has been applied to a microfluidic platform, in which fluorescent sensor -Cu(2+) displayed green fluorescence upon the addition of cyanide, the in vivo imaging of cyanide using Caenorhabditis elegans.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.