In this study, we investigated the effects of a crosslinking agent and a compatibilizer on the mechanical and rheological properties of waste PP and waste ground rubber tire (WGRT) composites. In order to simulate a commercial TPV, the component of waste PP and WGRT was fixed at 30 and 70 wt%, respectively. With the simple addition of SEBS-g-MA into the waste PP/WGRT composites, the tensile strength of the composite was decreased, whereas both the elongation at break and impact strength were significantly increased because of rubbery characteristics of SEBS-g-MA. In order to further improve the properties of the composites, the waste PP/WGRT/SEBS-g-MA composites was revulcanized with dicumyl peroxide (DCP). As expected, mechanical properties of the revulcanized composites was generally improved. Especially, with 15 and 1 phr of SEBS-g-MA and DCP, elongation at break was highest value of about 183% because of the recrosslinking of WGRT without chain scission of the main chain. It was found that complex viscosity of the revulcanized composite increased which might verify further vulcanization of the WGRT.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.