Varicella zoster virus (VZV) is a human-restricted α-herpesvirus that exhibits tropism for the skin. The VZV host receptors and downstream signaling pathways responsible for the antiviral innate immune response in the skin are not completely understood. Here, we show that STING mediates an important host defense against VZV infection in dermal cells including human dermal fibroblasts and HaCaT keratinocytes. Inhibition of STING using small interfering-RNA or short hairpin RNA-mediated gene disruption resulted in enhanced viral replication but diminished IRF3 phosphorylation and induction of IFNs and proinflammatory cytokines. Pretreatment with STING agonists resulted in reduced VZV glycoprotein E expression and viral replication. Additionally, using RNA sequencing to analyze dual host and VZV transcriptomes, we identified several host immune genes significantly induced by VZV infection. Furthermore, significant up-regulation of IFN-λ secretion was observed after VZV infection, partly through a STING-dependent pathway; IFN-λ was shown to be crucial for antiviral defense against VZV in human dermal cells. In conclusion, our data provide an important insight into STING-mediated induction of type I and III IFNs and subsequent antiviral signaling pathways that regulate VZV replication in human dermal cells.
Exposure to ultraviolet (UV) radiation is a major contributing factor to premature aging (photoaging) and skin cancer. In vitro models of cellular senescence have proven to be very useful for the study of slow and progressive accumulation of damage resulting in the growth arrest of aging skin cells. In this study, we compared UVA-induced cellular responses in non-senescent (NS) vs. senescent (S) human dermal fibroblasts (HDFs). HDFs were irradiated with a single dose of UVA (7.5 J/cm2) and QuantSeq 3' mRNA sequencing was performed to assess differential gene expression. Both NS and S HDFs expressed similar numbers of differentially expressed genes, although distinct sets of genes were differentially expressed between the two groups. Higher expression of matrix metalloproteinases (MMPs) and Toll-like receptor (TLR) pathway genes, such as TLR4, MyD88, and CXCL-8, was detected in S HDFs as compared with NS HDFs, and UVA exposure led to a downregulation of collagen genes, such as COL8A2 and COL5A3. Consistent with gene expression profiling, enhanced IL-6 and IL-8 secretion was observed in S HDFs compared with NS HDFs, in response to UVA. Furthermore, we show that TLR4-mediated ERK pathway is responsible for the UVA-mediated mitochondrial dysfunction as well as increased secretion of MMP-1 and IL-8 in S HDFs. Taken together, our results demonstrate the UVA-induced common and distinct molecular patterns of cellular responses between NS and S HDFs and suggest TLR4/ERK pathways as candidate targets to reduce senescent phenotypes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.