Although ethylene (C2H4) is one of the most critical chemicals used as a feedstock in artificial plastic chemistry fields, it is challenging to obtain high‐purity C2H4 gas without any trace ethane (C2H6) by the oil cracking process. Adsorptive separation using C2H6‐selective adsorbents is beneficial because it directly produces high‐purity C2H4 in a single step. Herein, Ni(IN)2 (HIN = isonicotinic acid) is computationally discovered as a promising adsorbent with the assistance of the multiscale high‐throughput computational screening workflow and Computation‐Ready, Experimental (CoRE) metal–organic framework (MOF) 2019 database. Ni(IN)2 is subsequently synthesized and tested to show the ideal adsorbed solution theory (IAST) selectivity of 2.45 at 1 bar for a C2H6/C2H4 mixture (1:15), which is one of the top‐performing selectivity values reported for C2H6‐selective MOFs as well as excellent recyclability, suggesting that this material is a promising C2H6‐selective adsorbent. Process‐level simulation results based on experimental isotherms demonstrate that the material is one of the top materials reported to date for ethane/ethylene separation under the conditions considered in this work.
<p> In this work, we proposed multi-scale screening, which employs both molecular and process-level models, to identify high-performing MOFs for energy-efficient separation of SF6 from SF<sub>6</sub> and N<sub>2</sub> mixture. Grand canonical Monte Carlo (GCMC) simulations were combined with ideal adsorption process simulation to computationally screen 14,000 metal-organic frameworks (MOFs) for adsorptive separation of SF6/N<sub>2</sub>. More than 150 high-performing MOFs were identified based on the results from GCMC simulations at the pressure and vacuum swing conditions, and subsequently evaluated using the ideal adsorption process simulation. High-performing MOFs selected for the VSA conditions are able to achieve the 90% target purity level of SF6 but none of the selected MOFs for PSA conditions could. Cascade PSA configuration was proposed and adopted to improve the purity level of the separated SF6. Cascade PSA configuration was also adopted to improve the purity. In the pump efficiency scenarios of 80, 20, and 10%, the VSA and cascade PSA cases were compared, which concluded 10% scenario prefers the PSA case whereas the VSA case is favored in the others. Top-performing MOFs identified from the multi-scale computational approach were found to be able to produce 90% purity SF<sub>6</sub> with 0.10 - 0.4 and 0.5 - 1.4 MJ per kg of SF6 for VSA and PSA, respectively.</p>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.