In this paper, we reviewed the recent trends on neuromorphic computing using emerging memory technologies. Two representative learning algorithms used to implement a hardwarebased neural network are described as a bio-inspired learning algorithm and software-based learning algorithm, in particular back-propagation. The requirements of the synaptic device to apply each algorithm were analyzed. Then, we reviewed the research trends of synaptic devices to implement an artificial neural network.
Hardware-based spiking neural networks (SNNs) inspired by a biological nervous system are regarded as an innovative computing system with very low power consumption and massively parallel operation. To train SNNs with supervision, we propose an efficient on-chip training scheme approximating backpropagation algorithm suitable for hardware implementation. We show that the accuracy of the proposed scheme for SNNs is close to that of conventional artificial neural networks (ANNs) by using the stochastic characteristics of neurons. In a hardware configuration, gated Schottky diodes (GSDs) are used as synaptic devices, which have a saturated current with respect to the input voltage. We design the SNN system by using the proposed on-chip training scheme with the GSDs, which can update their conductance in parallel to speed up the overall system. The performance of the on-chip training SNN system is validated through MNIST data set classification based on network size and total time step. The SNN systems achieve accuracy of 97.83% with 1 hidden layer and 98.44% with 4 hidden layers in fully connected neural networks. We then evaluate the effect of non-linearity and asymmetry of conductance response for long-term potentiation (LTP) and long-term depression (LTD) on the performance of the on-chip training SNN system. In addition, the impact of device variations on the performance of the on-chip training SNN system is evaluated.
Hardware-based Spiking Neural Networks (SNNs) are regarded as promising candidates for the cognitive computing system due to its low power consumption and highly parallel operation. In this paper, we train the SNN in which the firing time carries information using temporal backpropagation. The temporally encoded SNN with 512 hidden neurons achieved an accuracy of 96.90% for the MNIST test set. Furthermore, the effect of the device variation on the accuracy in temporally encoded SNN is investigated and compared with that of the rate-encoded network. In a hardware configuration of our SNN, NOR-type analog memory having an asymmetric floating gate is used as a synaptic device. In addition, we propose a neuron circuit including a refractory period generator for temporally encoded SNN. The performance of the 2-layer neural network composed of synapses and proposed neurons is evaluated through circuit simulation using SPICE based on the BSIM3v3 model with 0.35 μm technology. The network with 128 hidden neurons achieved an accuracy of 94.9%, a 0.1% reduction compared to that of the system simulation of the MNIST dataset. Finally, each block's latency and power consumption constituting the temporal network is analyzed and compared with those of the rate-encoded network depending on the total time step. Assuming that the network has 256 total time steps, the temporal network consumes 15.12 times less power than the rateencoded network and makes decisions 5.68 times faster.
Brain-inspired analog neuromorphic systems based on the synaptic arrays have attracted large attention due to low-power computing. Spike-timing-dependent plasticity (STDP) algorithm is considered as one of the appropriate neuro-inspired techniques to be applied for on-chip learning. The aim of this study is to investigate the methodology of unsupervised STDP based learning in temporal encoding systems. The system-level simulation was performed based on the measurement results of thin-film transistor-type asymmetric floating-gate NOR flash memory. With proposed learning methods, 91.53% of recognition accuracy is obtained in inferencing MNIST standard dataset with 200 output neurons. Moreover, temporal encoding rules showed that the number of input pulses and the computing power can be compressed without significant loss of recognition accuracy compared to the conventional rate encoding scheme. In addition, temporal computing in a multi-layer network is suitable for learning data sequences, suggesting the possibility of applying to real-world tasks such as classifying direction of moving objects.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.