We investigated layered titanium nitride (TiN) and aluminum nitride (AlN) for color glasses in building integrated photovoltaic (BIPV) systems. AlN and TiN are among suitable and cost-effective optical materials to be used as thin multilayer films, owing to the significant difference in their refractive index. To fabricate the structure, we used radio frequency magnetron deposition method to achieve the target thickness uniformly. A simple, fast, and cheap fabrication method is achieved by depositing the multilayer films in a single sputtering chamber. It is demonstrated that a multilayer stack that allows light to be transmitted from a low refractive index layer to a high refractive index layer or vice-versa can effectively create various distinct color reflections for different film thicknesses and multilayer structures. It is investigated from simulation based on wave optics that TiN/AlN multilayer offers better color design freedom and a cheaper fabrication process as compared to AlN/TiN multilayer films. Blue, green, and yellow color glasses with optical transmittance of more than 80% was achieved by indium tin oxide (ITO)-coated glass/TiN/AlN multilayer films. This technology exhibits good potential in commercial BIPV system applications.
In this study, we propose a solution process for realizing colored glass for building integrated photovoltaic (BIPV) systems by spin coating a color solution composed of pearlescent pigments mixed in a Norland Optical Adhesive (NOA) matrix. Color solutions are made from mixing pearlescent pigments in NOA63. Compared to a physical vapor deposition process, color coatings are achieved by spin coating in a relatively simple and inexpensive process at room temperature. The optical properties can be easily controlled by adjusting the spin coating speed and the concentration of the pearlescent pigments. The produced colored glass achieved a high transmittance of 85% or more in the visible wavelength range, except for the wavelength spectrum exhibiting the maximum reflectance. In addition, we propose a one-step lamination process of colored glass on a solar cell by leveraging on the adhesive property of the NOA matrix. This eliminates the cost and process of additional ethylene vinyl acetate (EVA) layer or other materials used in the conventional lamination process. The colored glass produced through this study has stability that does not change its properties over time. Therefore, it is expected to be applied to the BIPV solar module market where aesthetics and energy efficiency are required.
As the demand for small devices with embedded flash memory increases, semiconductor manufacturers have been recently focusing on producing high-capacity multiple-chip products (MCPs). Due to the frequently re-entrant lots between the die attach (DA) and wire bonding (WB) assembly stages in MCP production, increased flow time and decreased resource utilization are unavoidable. In this paper, we propose a dispatcher based on artificial neural networks, which minimizes the flow time while maintaining high utilization of resources at the same time through exploiting the possible intentional delays on DA stage. Specifically, the proposed dispatcher learns the assignment preferences between available lots and DA resources based on assembly line data generated by using a simulator, then the proposed dispatcher performs lot dispatching decisions by considering the intentional delays. The numerical experiments were performed under various configurations of the MCP assembly lines, and the results show that the proposed dispatcher outperformed the existing methods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.