ObjectiveThe upregulated expression of heparin binding EGF-like growth factor (HB-EGF) in the vessel and circulation is associated with risk of cardiovascular disease. In this study, we tested the effects of HB-EGF targeting using HB-EGF-specific antisense oligonucleotide (ASO) on the development of aortic aneurysm in a mouse aneurysm model.Approach and resultsLow-density lipoprotein receptor (LDLR) deficient mice (male, 16 weeks of age) were injected with control and HB-EGF ASOs for 10 weeks. To induce aneurysm, the mice were fed a high fat diet (22% fat, 0.2% cholesterol; w/w) at 5 week point of ASO administration and infused with angiotensin II (AngII, 1,000ng/kg/min) for the last 4 weeks of ASO administration. We confirmed that the HB-EGF ASO administration significantly downregulated HB-EGF expression in multiple tissues including the liver. Importantly, the HB-EGF ASO administration significantly suppressed development of aortic aneurysms including thoracic and abdominal types. Interestingly, the HB-EGF ASO administration induced a remarkable anti-hyperlipidemic effect by suppressing very low density lipoprotein (VLDL) level in the blood. Mechanistically, the HB-EGF targeting suppressed hepatic VLDL secretion rate without changing heparin-releasable plasma triglyceride (TG) hydrolytic activity or fecal neutral cholesterol excretion rate.ConclusionThis result suggested that the HB-EGF targeting induced protection against aneurysm development through anti-hyperlipidemic effects. Suppression of hepatic VLDL production process appears to be a key mechanism for the anti-hyperlipidemic effects by the HB-EGF targeting.
Objective: Elevation of apoB-containing lipoproteins is a well-established risk factor for the development of atherosclerosis. Previous reports showed that expression of heparin-binding EGF-like growth factor (HBEGF), a ligand of epidermal growth factor receptor (EGFR), is associated with atherosclerosis development. In this study, we examined in vivo effects of HBEGF targeting on hyperlipidemia-induced atherosclerosis by suppressing HBEGF expression using antisense oligonucleotide (ASO). Methods and Results: Female and male LDLR deficient mice were fed a high fat diet (HFD; 21% fat, 0.2% cholesterol) throughout the study. After 8 weeks of HFD feeding, mice were injected intraperitoneally with either control or HBEGF ASOs weekly for 12 weeks. At termination, we measured circulating lipid concentrations and atherosclerotic lesion size in the aorta. Compared to control ASO group, HBEGF ASO group had a significant reduction of circulating total cholesterol, triglyceride, and apoB-containing lipoprotein concentrations but no change of high-density lipoprotein (HDL) concentration. Importantly, HBEGF ASO injection significantly suppressed atherosclerosis in the aortic arch, thoracic, and abdominal aorta. HBEGF ASO suppressed sterol synthetic gene expression in the liver but elevated lipid contents in the liver. HBEGF gene silencing in a liver cell system induced downregulation of sterol regulatory element binding protein (SREBP) target genes including LDLR and Insig1. Conclusion: Targeting HBEGF using ASOs is an efficient approach to suppress dyslipidemia and hyperlipidemia-induced atherosclerosis. The differential gene expression analysis suggests that HBEGF ASO administration suppresses SREBP-regulated gene expression in the liver leading to downregulation of circulating cholesterol and TG concentrations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.