We propose a novel unsupervised domain adaptation framework based on domain-specific batch normalization in deep neural networks. We aim to adapt to both domains by specializing batch normalization layers in convolutional neural networks while allowing them to share all other model parameters, which is realized by a twostage algorithm. In the first stage, we estimate pseudolabels for the examples in the target domain using an external unsupervised domain adaptation algorithm-for example, MSTN [27] or CPUA [14]-integrating the proposed domain-specific batch normalization. The second stage learns the final models using a multi-task classification loss for the source and target domains. Note that the two domains have separate batch normalization layers in both stages. Our framework can be easily incorporated into the domain adaptation techniques based on deep neural networks with batch normalization layers. We also present that our approach can be extended to the problem with multiple source domains. The proposed algorithm is evaluated on multiple benchmark datasets and achieves the state-of-theart accuracy in the standard setting and the multi-source domain adaption scenario.
We propose a generic framework to calibrate accuracy and confidence of a prediction in deep neural networks through stochastic inferences. We interpret stochastic regularization using a Bayesian model, and analyze the relation between predictive uncertainty of networks and variance of the prediction scores obtained by stochastic inferences for a single example. Our empirical study shows that the accuracy and the score of a prediction are highly correlated with the variance of multiple stochastic inferences given by stochastic depth or dropout. Motivated by this observation, we design a novel variance-weighted confidence-integrated loss function that is composed of two cross-entropy loss terms with respect to ground-truth and uniform distribution, which are balanced by variance of stochastic prediction scores. The proposed loss function enables us to learn deep neural networks that predict confidence calibrated scores using a single inference. Our algorithm presents outstanding confidence calibration performance and improves classification accuracy when combined with two popular stochastic regularization techniques-stochastic depth and dropout-in multiple models and datasets; it alleviates overconfidence issue in deep neural networks significantly by training networks to achieve prediction accuracy proportional to confidence of prediction.
We propose a simple but effective multi-source domain generalization technique based on deep neural networks by incorporating optimized normalization layers specific to individual domains. Our approach employs multiple normalization methods while learning a separate affine parameter per domain. For each domain, the activations are normalized by a weighted average of multiple normalization statistics. The normalization statistics are kept track of separately for each normalization type if necessary. Specifically, we employ batch and instance normalizations in our implementation and attempt to identify the best combination of two normalization methods in each domain and normalization layer. In addition, we augment new domains through the combinations of multiple existing domains to increase the diversity of source domains available during training. The optimized normalization layers and the domain augmentation are effective to enhance the generalizability of the learned model. We demonstrate the state-ofthe-art accuracy of our algorithm in the standard benchmark datasets.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.