The porphyrin boxes (PB-1 and PB-2), which are rationally designed porous organic cages with a large cavity using well-defined and rigid 3-connected triangular and 4-connected square shaped building units are reported. PB-1 has a cavity as large as 1.95 nm in diameter and shows high chemical stability in a broad pH range (4.8 to 13) in aqueous media. The crystalline nature as well as cavity structure of the shape-persistent organic cage crystals were intact even after complete removal of guest molecules, leading to one of the highest surface areas (1370 m(2) g(-1)) among the known porous organic molecular solids. The size of the cavities and windows of the porous organic cages can be modulated using different sized building units while maintaining the topology of the cages, as illustrated with PB-2. Interestingly, PB-2 crystals showed unusual N2 sorption isotherms as well as high selectivity for CO2 over N2 and CH4 (201 and 47.9, respectively at 273 K at 1 bar).
A detailed study of the direct synthesis of polymer nanocapsules, which does not require any template, and core removal, is presented. Thiol-ene "click" reaction between a CB[6] derivative (1) with 12 allyloxy groups at the periphery and dithiols directly produced polymer nanocapsules with a highly stable structure and relatively narrow size distribution. Based on a number of observations including the intermediates detected by DLS, TEM, and SEM studies, a mechanism of the nanocapsule formation was proposed, which includes 2D oligomeric patches turning into a hollow sphere. A theoretical study supports that the formation of a hollow sphere from a disk-shaped intermediate can be thermodynamically favorable under certain conditions. In particular, the effects of various factors such as monomer concentration, reaction temperature, and medium on the formation of polymer nanocapsules have been investigated, which qualitatively agree with those predicted by our theoretical model. An interesting feature of the polymer nanocapsules was that the polymer shell made of a CB[6] derivative allows facile tailoring of its surface properties in a noncovalent and modular manner by virtue of the unique recognition properties of the accessible molecular cavities exposed on the surface. Furthermore, this approach appears to be applicable to any building unit with a flat core and multiple polymerizable groups at the periphery which can direct polymer growth in lateral directions. Other reactions, such as amide bond formation, can be used for the synthesis of polymer nanocapsules in this approach. This novel approach to polymer nanocapsules represents a rare example of self-assembly of molecular components into nanometer-scale objects with interesting structures, shapes, and morphology through irreversible covalent bond formation.
We report here a synthetic ion channel developed from a shape-persistent porphyrin-based covalent organic cage. The cage was synthesized by employing a synthetically economical dynamic covalent chemistry (DCC) approach. The organic cage selectively transports biologically relevant iodide ions over other inorganic anions by a dehydration-driven, channel mechanism as evidenced by vesicle-based fluorescence assays and planar lipid bilayer-based single channel recordings. Furthermore, the organic cage appears to facilitate iodide transport across the membrane of a living cell, suggesting that the cage could be useful as a biological tool that may replace defective iodide channels in living systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.