Intraocular pressure (IOP) measurement is one of the basic tests performed in ophthalmology and is known to be an important risk factor for the development and progression of glaucoma. Measurement of IOP is important for assessing response to treatment and monitoring the progression
of the disease in glaucoma. In this study, we investigate a method for measuring IOP using the characteristics of vibration propagation generated when the structure is in contact with the eyeball. The response was measured using an accelerometer and a force sensitive resistor to determine
the correlation between the IOP. Experiment was performed using ex-vivo porcine eyes. To control the IOP, a needle of the infusion line connected with the water bottle was inserted into the porcine eyes through the limbus. A cross correlation analysis between the accelerometer and the force
sensitive resistor was performed to derive a vibration factor that indicate the change in IOP. In order to analyze the degree of influence of biological tissues such as the eyelid, silicon was placed between the structure and the eyeball. The Long Short-Term Memory (LSTM) deep learning algorithm
was used to predict IOP based on the vibration factor.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.