Quorum quenching (QQ) has recently been acknowledged to be a sustainable antifouling strategy and has been investigated widely using lab-scale membrane bioreactor (MBR) systems. This study attempted to bring this QQ-MBR closer to potential practical application. Two types of pilot-scale QQ-MBRs with QQ bacteria entrapping beads (QQ-beads) were installed and run at a wastewater treatment plant, feeding real municipal wastewater to test the systems' effectiveness for membrane fouling control and thus the amount of energy savings, even under harsh environmental conditions. The rate of transmembrane pressure (TMP) build-up was significantly mitigated in QQ-MBR compared to that in a conventional-MBR. Consequently, QQ-MBR can substantially reduce energy consumption by reducing coarse bubble aeration without compromising the effluent water quality. The addition of QQ-beads to a conventional MBR substantially affected the EPS concentrations, as well as microbial floc size in the mixed liquor. Furthermore, the QQ activity and mechanical stability of QQ-beads were well maintained for at least four months, indicating QQ-MBR has good potential for practical applications.
In the last 30 years, the use of membrane bioreactors (MBRs) for advanced wastewater treatment and reuse have been expanded continuously, but they still suffer from excessive energy consumption resulting from the intrinsic problem of membrane biofouling. One of the major causes of biofouling in MBRs is bacterial quorum sensing (QS) via N-acylhomoserine lactones (AHLs) and/or autoinducer-2 (AI-2), enabling intra- and interspecies communications, respectively. In this study, we demonstrate that farnesol can substantially mitigate membrane biofouling in a MBR due to its quorum quenching (QQ) activity. When Candida albicans (a farnesol producing fungus) entrapping polymer beads (AEBs) were placed in the MBR, the rate of transmembrane pressure (TMP) rise-up was substantially decreased, even for lower aeration intensities. This finding corresponds to a specific aeration energy savings of approximately 40% (25% through the physical washing effect and a further 15% through the biological QQ effect of AEBs) compared to conventional MBRs without AEBs. A real-time RT-qPCR analysis revealed that farnesol secreted from C. albicans mitigated the biofilm formation in MBRs via the suppression of AI-2 QS. Successful control of biofouling and energy savings through fungal-to-bacterial QQ could be expanded to the plant scale for MBRs in wastewater treatment with economic feasibility.
Recently, membrane bioreactors (MBRs) with quorum quenching (QQ) bacteria entrapping beads have been reported as a new paradigm in biofouling control because, unlike conventional post-biofilm control methods, bacterial QQ can inhibit biofilm formation through its combined effects of physical scouring of the membrane and inhibition of quorum sensing (QS). In this study, using a special reporter strain (Escherichia coli JB525), the interaction between QS signal molecules and quorum quenching bacteria entrapping beads (QQ-beads) was elucidated through visualization of the QS signal molecules within a QQ-bead using a fluorescence microscope. As a result, under the conditions considered in this study, the surface area of QQ-media was likely to be a dominant parameter in enhancing QQ activity over total mass of entrapped QQ bacteria because QQ bacteria located near the core of a QQ-bead were unable to display their QQ activities. On the basis of this information, a more efficient QQ-medium, a QQ hollow cylinder (QQ-HC), was designed and prepared. In batch experiments, QQ-HCs showed greater QQ activity than QQ-beads as a result of their higher surface area and enhanced physical washing effect because of their larger impact area against the membrane surface. Furthermore, it was shown that such advantages of QQ-HCs resulted in more effective mitigation of membrane fouling than from QQ-beads in lab-scale continuous MBRs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.