Recently, the Cancer Genome Atlas (TCGA) Research Network and Asian Cancer Research Group provided a new classification of gastric cancer (GC) to aid the development of biomarkers for targeted therapy and predict prognosis. We studied associations between genetically aberrant profiles of cancer-related genes, environmental factors, and histopathological features in 107 paired gastric tumor-non-tumor tissue GC samples. 6.5% of our GC cases were classified as the EBV subtype, 17.8% as the MSI subtype, 43.0% as the CIN subtype, and 32.7% as the GS subtype. The distribution of four GC subgroups based on the TCGA and our dataset were similar. The MSI subtype showed a hyper-mutated status and the best prognosis among molecular subtype. However, molecular classification based on the four GC subtypes showed no significant survival differences in terms of overall survival (p= 0.548) or relapse-free survival (RFS, p=0.518). The P619fs*43 in ZBTB20 was limited to MSI group (n= 5/19, 26.3%), showing similar trends observed in TCGA dataset.Genetic alterations of the RTK/RAS/MAPK and PI3K/AKT/mTOR pathways were detected in 34.6% of GC cases (37 individual cases). We also found two cases with likely pathogenic variants (NM_004360.4: c. 2494 G>A, p.V832M) in the CDH1 gene.Here, we classified molecular subtypes of GC according to the TCGA system and provide a critical starting point for the design of more appropriate clinical trials based on a comprehensive analysis of genetic alterations in Korean GC patients.
In this study, we validated the analytical performance of BRCA1/2 sequencing using Ion Torrent's new bench-top sequencer with amplicon panel with optimized bioinformatics pipelines. Using 43 samples that were previously validated by Illumina's MiSeq platform and/or by Sanger sequencing/multiplex ligation-dependent probe amplification, we amplified the target with the Oncomine™ BRCA Research Assay and sequenced on Ion Torrent S5 XL (Thermo Fisher Scientific, Waltham, MA, USA). We compared two bioinformatics pipelines for optimal processing of S5 XL sequence data: the Torrent Suite with a plug-in Torrent Variant Caller (Thermo Fisher Scientific), and commercial NextGENe software (Softgenetics, State College, PA, USA). All expected 681 single nucleotide variants, 15 small indels, and three copy number variants were correctly called, except one common variant adjacent to a rare variant on the primer-binding site. The sensitivity, specificity, false positive rate, and accuracy for detection of single nucleotide variant and small indels of S5 XL sequencing were 99.85%, 100%, 0%, and 99.99% for the Torrent Variant Caller and 99.85%, 99.99%, 0.14%, and 99.99% for NextGENe, respectively. The reproducibility of variant calling was 100%, and the precision of variant frequency also showed good performance with coefficients of variation between 0.32 and 5.29%. We obtained highly accurate data through uniform and sufficient coverage depth over all target regions and through optimization of the bioinformatics pipeline. We confirmed that our platform is accurate and practical for diagnostic BRCA1/2 testing in a clinical laboratory.
To investigate the association between the results of urinalysis and those of concurrent urine cultures, and to construct a prediction model for the results of urine culture. A total of 42,713 patients were included in this study. Patients were divided into two independent groups including training and test datasets. A novel prediction algorithm, designated the UTOPIA value, was constructed with the training dataset, based on an association between the results of urinalysis and those of concurrent urine culture. The diagnostic performance of the UTOPIA value was validated with the test dataset. Six variables were selected for the equation of the UTOPIA value: age of higher UTI risk [odds ratio (OR), 2.069125], female (OR, 1.400648), nitrite (per 1 grade; OR, 3.765457), leukocyte esterase (per 1 grade; OR, 1.701586), the number of WBCs (per 1 × 106/L; OR, 1.000121), and the number of bacteria (per 1 × 106/L; OR, 1.004195). The UTOPIA value exhibited an area under the curve value of 0.837 when validated with the independent test dataset. The UTOPIA value displayed good diagnostic performance for predicting urine culture results, which would help to reduce unnecessary culture. Different cutoffs can be used according to the clinical indication.
ObjectiveA simultaneous detection of germline and somatic mutations in ovarian cancer (OC) using tumor materials is considered to be cost-effective for BRCA1/2 testing. However, there are limited studies of the analytical performances according to various sample types. The aim of this study is to propose a strategy for routine BRCA1/2 next-generation sequencing (NGS) screening based on analytical performance according to different sample types.MethodsWe compared BRCA1/2 NGS screening assay using buffy coat, fresh-frozen (FF) and formalin-fixed paraffin-embedded (FFPE) from 130 samples.ResultsThe rate of repeated tests in a total of buffy coat, FF and FFPE was 0%, 8%, and 34%, respectively. The accuracy of BRCA1/2 NGS testing was 100.0%, 99.9% and 99.9% in buffy coat, FFPE and FF, respectively. However, due to the presence of variant allele frequency (VAF) shifted heterozygous variants, tumor materials (FFPE and FF) showed lower sensitivity (95.5%–99.0%) than buffy coat (100%). Furthermore, FFPE showed 51.4% of the positive predictive value (PPV) on account of sequence artifacts. When performed in the post-filtration process, PPV was increased by approximately 20% in FFPE. Buffy coat showed 100% of sensitivity, specificity and accuracy in BRCA1/2 NGS test.ConclusionsOn the comparison of the analytical performance according to different sample types, the buffy coat was not affected by sequencing artifacts and VAF shifted variants. Therefore, the blood test should be given priority in detecting germline BRCA1/2 mutation, and tumor materials could be suitable to detect somatic mutations in OC patients without identifying germline BRCA1/2 mutation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.