Objectives: To be able to predict, at the time of triage, whether a need for hospital admission exists for emergency department (ED) patients may constitute useful information that could contribute to systemwide hospital changes designed to improve ED throughput. The objective of this study was to develop and validate a predictive model to assess whether a patient is likely to require inpatient admission at the time of ED triage, using routine hospital administrative data.Methods: Data collected at the time of triage by nurses from patients who visited the ED in 2007 and 2008 were extracted from hospital administrative databases. Variables included were demographics (age, sex, and ethnic group), ED visit or hospital admission in the preceding 3 months, arrival mode, patient acuity category (PAC) of the ED visit, and coexisting chronic diseases (diabetes, hypertension, and dyslipidemia). Chi-square tests were used to study the association between the selected possible risk factors and the need for hospital admission. Logistic regression was applied to develop the prediction model. Data were split for derivation (60%) and validation (40%). Receiver operating characteristic curves and goodness-of-fit tests were applied to the validation data set to evaluate the model. Results:Of 317,581 ED patient visits, 30.2% resulted in immediate hospital admission. In the developed predictive model, age, PAC status, and arrival mode were most predictive of the need for immediate hospital inpatient admission. The c-statistic of the receiver operating characteristic (ROC) curve was 0.849 (95% confidence interval [CI] = 0.847 to 0.851). The goodness-of-fit test showed that the predicted patients' admission risks fit the patients' actual admission status well. Conclusions:A model for predicting the risk of immediate hospital admission at triage for all-cause ED patients was developed and validated using routinely collected hospital data. Early prediction of the need for hospital admission at the time of triage may help identify patients deserving of early admission planning and resource allocation and thus potentially reduce ED overcrowding.
BackgroundThe presentation of new influenza A(H1N1) is broad and evolving as it continues to affect different geographic locations and populations. To improve the accuracy of predicting influenza infection in an outpatient setting, we undertook a comparative analysis of H1N1(2009), seasonal influenza, and persons with acute respiratory illness (ARI) in an outpatient setting.Methodology/Principal FindingsComparative analyses of one hundred non-matched cases each of PCR confirmed H1N1(2009), seasonal influenza, and ARI cases. Multivariate analysis was performed to look for predictors of influenza infection. Receiver operating characteristic curves were constructed for various combinations of clinical and laboratory case definitions. The initial clinical and laboratory features of H1N1(2009) and seasonal influenza were similar. Among ARI cases, fever, cough, headache, rhinorrhea, the absence of leukocytosis, and a normal chest radiograph positively predict for both PCR-confirmed H1N1-2009 and seasonal influenza infection. The sensitivity and specificity of current WHO and CDC influenza-like illness (ILI) criteria were modest in predicting influenza infection. However, the combination of WHO ILI criteria with the absence of leukocytosis greatly improved the accuracy of diagnosing H1N1(2009) and seasonal influenza (positive LR of 7.8 (95%CI 3.5–17.5) and 9.2 (95%CI 4.1–20.3) respectively).Conclusions/SignificanceThe clinical presentation of H1N1(2009) infection is largely indistinguishable from that of seasonal influenza. Among patients with acute respiratory illness, features such as a temperature greater than 38°C, rhinorrhea, a normal chest radiograph, and the absence of leukocytosis or significant gastrointestinal symptoms were all positively associated with H1N1(2009) and seasonal influenza infection. An enhanced ILI criteria that combines both a symptom complex with the absence of leukocytosis on testing can improve the accuracy of predicting both seasonal and H1N1-2009 influenza infection.
The NISS should not replace the ISS, as they share similar accuracy and calibration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.