Morin is a well-known flavonoid, and has been reported to have various properties, such as anti-cell death, antioxidant, and anti-inflammatory properties. Although studies on the biochemical and biological actions of morin have been reported, the melanin biosynthesis effects and molecular mechanisms are unknown. In this study, we first found that morin has the effect of enhancing melanin biosynthesis in B16F10 mouse melanoma cells, and analyzed the molecular mechanism. In this study, we examined the effects of morin on the melanin contents and tyrosinase activity, as well as the protein expression levels of the melanogenic enzymes TRP-1, TRP-2, and microphtalmia-associated transcription factor (MITF) in B16F10 mouse melanoma cells. Morin showed no cytotoxicity in the concentration range of 5–100 μM, and significantly increased the intracellular tyrosinase activity and melanin contents. In mechanism analysis, morin increased the protein expression of TRP-1, TRP-2, and MITF associated with melanogenesis. Furthermore, morin increased phosphorylated ERK and p38 at the early time, and decreased phosphorylated ERK after 12 h. The results suggest that morin enhances melanin synthesis through the MAPK signaling pathways in B16F10 mouse melanoma cells.
Green tea extract derived from the leaves of Camellia sinensis L. (CS), is a representative beverage with antioxidant, anti-cancer, and anti-viral properties. CS extract is also used in cosmetics. Colloidal gold is generally a sol or colloidal suspension of gold nanoparticles in water. Colloidal gold green tea (CGCS), cultivated as a fertilizer using this colloidal gold solution, contains gold minerals and possesses anti-inflammatory, analgesic, and anti-tumor properties. However, the skin bioactivity of CGCS has not yet been investigated. In this study, we investigated the effect of the CGCS extract on skin whitening. CGCS extract contained high levels of phenols and flavonoids and displayed 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity in a concentration-dependent manner. CGCS extract inhibited melanin synthesis and tyrosinase activity in B16F10 cells more effectively than the CS extract. Moreover, the CGCS extract decreased the expression levels of the melanogenesis-related proteins, tyrosinase, tyrosinase-related proteins (TRPs), and microphthalmia-associated transcription factor (MITF). In conclusion, our study showed that the CGCS extract inhibits the expression of tyrosinase, TRP-1, and TRP-2 via the downregulation of MITF, thereby inhibiting melanin synthesis. Therefore, CGCS can potentially be used as a skin-whitening ingredient in the cosmetic industry.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.