Poly(vinyl chloride) (PVC)/SiO 2 nanocomposite hollow-fiber membranes with different nano-SiO 2 particle loadings (0–5 wt %) were fabricated using the dry-jet wet-spinning technique. Effects of SiO 2 nanoparticles on the morphology of the prepared hollow-fiber membranes were investigated using scanning electron microscopy. Transport and antifouling properties of the fabricated membranes were evaluated by conducting pure-water permeation, solute rejection, and fouling resistance experiments. These studies indicated that incorporating silica nanoparticles into the PVC matrix during phase inversion lowers the hydraulic resistance through the membrane and narrows the selective membrane pores. Moreover, the nanocomposite membranes showed better antifouling properties compared to the pristine membrane during the ultrafiltration of a milk solution because of improved hydrophilicity and uniform dispersion of the nanoparticles. This work indicates that embedding silica nanoparticles into the PVC matrix is a promising method for producing cost-effective hollow-fiber ultrafiltration membranes with superior transport and antifouling properties.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.