Zeolites are widely used as ion exchangers, adsorbents, separation materials and catalyst due to their welltailored and highly-reproducible structures; therefore, the synthesis of zeolite from low grade resources can be interested. In the present work, high aluminum zeolite X was prepared from mixing technical grade sodium aluminate and sodium silicate solutions at temperatures between 70°C and 100°C. The synthesized zeolite X was characterized by SEM and X-ray methods according to ASTM standard procedures. The results showed that aging of the synthesis medium at the room temperature considerably increased the selectivity of zeolite X formation. On the other hand, high temperature of reaction mixture during crystallization formed zeolite A in the product; therefore, it decreased the purity of zeolite X. In addition, it was found that increasing H2O/Na2O and decreasing Na2O/SiO2 molar ratios in the reaction mixture resulted product with higher purity.
Iron-Cobalt catalyst is well known from both operational and economical aspects for Fischer-Tropsch synthesis. Effort to increase the efficiency of this kind of catalyst is an important research topic. In this work, the effect of lanthanum on characteristic behavior, conversion and selectivity of a Fe-Co/SiO2 Fischer-Tropsch catalyst was studied. The Fe-Co-La/SiO2 catalysts were prepared using an incipient wetness impregnation method. These catalysts were then characterized by XRF-EDAX, BET and TPR techniques, and their performances were evaluated in a lab-scale reactor at 250 ºC, H2/CO = 1.8 of molar ratio, 16 barg pressure and GHSV = 600 h-1. TPR analysis showed that the addition of La lowered the reduction temperature of Fe-Co catalyst, and due to a lower temperature, the sintering of the catalyst could be mitigated. Furthermore, from these tests (about 4 days), it was found that lanthanum promoted catalyst had higher selectivity toward hydrocarbons, and lower selectivity toward CO2.
To study the affinity of 3A aluminosilicate adsorbents to prevent oligomerization of olefin molecules and forming green oil, physical and chemical properties of 3A molecular sieves are measured by using characterization techniques such as temperature-programmed desorption (TPD), nitrogen (N2) and water adsorptions, X-ray diffraction (XRD), X-ray fluorescence (XRF), crushing strength, and carbon dioxide (CO2) adsorption. Moreover, coke formation affinities of the understudy adsorbents are evaluated in a bench-scale system using 1-butene and 1,3-butadiene at temperatures of 220 and 260 °C, and outcomes are validated against the actual data gathered from an industrial scale olefin dehydration plant. Results confirm that the type of binder and the amount of ion exchange affect the performance of a 3A molecular sieve nominated for dehydrating olefinic streams. The binder with the least amount of acidity is preferred, and at least 35% of Na ions of the 4A zeolite should be exchanged with K ions to make it applicable for synthesizing an appropriate 3A molecular sieve. Furthermore, to control the oligomerization and inhibit green oil formation, the CO2 adsorption and acidity of Trisiv shape molecular sieves with the sizes of 1/4 inch should be less than 0.5 wt % and 1.7 mmol NH3/g, respectively. For extrudate shape with the sizes of 1/16 inch CO2 adsorption and acidity should be less than 0.2 wt % and 2.2 mmol NH3/g, respectively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.