Conventional Wilkinson power dividers (WPDs) can provide acceptable performance close to the nominal center frequency. However, these WPDs can also exhibit poor out-of-band performance while requiring a large footprint. In order to improve on the current state of the art, a modified microstrip WPD is proposed that exhibits a substantially improved stopband and high isolation. A lowpass filter (LPF) structure is utilized in both branches of the power divider to provide harmonic suppression. According to the obtained results, the input return loss (|S11|), output return loss (|S22|), output insertion loss (|S21|) and isolation (|S32|) are better than 34.2 dB, 26.2 dB, 3.52 dB and 31.2 dB, respectively. The proposed modified WPD has a wide 20 dB stopband (from 2.54 GHz to 13.48 GHz) and filters the second to seventh harmonics with attenuation levels of greater than 20 dB. The proposed WPD has a small size of 33.8 mm × 27 mm (0.42 λg × 0.33 λg), where λg is the guided wavelength at the operating frequency of 1.8 GHz. The WPD has been fabricated and tested and shows good agreement between simulated and measured results and the proposed design has desirable characteristics for LTE and GSM applications.
This study presents a combination of optimal placement and power system development with the aim of supplying electricity for Nuclear Power Plant after the trip of power plant. Power supply to the internal loads of power plant by the off-site power system is one of the main fields of research in achieving the safety Nuclear Power Plant. One of the main purposes in this article is to introduce a suitable and safe place for the construction and connection of a Nuclear Power Plant to the power system. These locations are identified by the power plants on-site loads and the average of the lowest number of relay protection after the Nuclear Power Plant trip, based on electricity considerations. Along with the optimal placement in this paper, the power system development, including the generation and transmission development in order to provide electricity with higher reliability to the Nuclear Power Plant after the trip is also presented. Monte Carlo and Latin Hypercube Sampling probabilistic methods are proposed for locating the site of a Nuclear Power Plant and algorithms of Genetic and Particle Swarm Optimization for locating and developing power generation and transmission systems. The simulation results are implemented on the IEEE RTS 24-bus system, and finally suitable locations for the construction of the Nuclear Power Plant and the generation and transmission development with the aim of feeding the power plant from the off-site power system and sufficient assurance that the reactor core does not melt after the trip, are determined.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.