Image segmentation is an important step in most visual tasks. While convolutional neural networks have shown to perform well on single image segmentation, to our knowledge, no study has been done on leveraging recurrent gated architectures for video segmentation. Accordingly, we propose and implement a novel method for online segmentation of video sequences that incorporates temporal data. The network is built from a fully convolutional network and a recurrent unit that works on a sliding window over the temporal data. We use convolutional gated recurrent unit that preserves the spatial information and reduces the parameters learned. Our method has the advantage that it can work in an online fashion instead of operating over the whole input batch of video frames. The network is tested on video segmentation benchmarks in Segtrack V2 and Davis. It proved to have 5% improvement in Segtrack and 3% improvement in Davis in F-measure over a plain fully convolutional network.
Semantic segmentation has recently witnessed major progress, where fully convolutional neural networks have shown to perform well. However, most of the previous work focused on improving single image segmentation. To our knowledge, no prior work has made use of temporal video information in a recurrent network. In this paper, we introduce a novel approach to implicitly utilize temporal data in videos for online semantic segmentation. The method relies on a fully convolutional network that is embedded into a gated recurrent architecture. This design receives a sequence of consecutive video frames and outputs the segmentation of the last frame. Convolutional gated recurrent networks are used for the recurrent part to preserve spatial connectivities in the image. Our proposed method can be applied in both online and batch segmentation. This architecture is tested for both binary and semantic video segmentation tasks. Experiments are conducted on the recent benchmarks in SegTrack V2, Davis, CityScapes, and Synthia. Using recurrent fully convolutional networks improved the baseline network performance in all of our experiments. Namely, 5% and 3% improvement of F-measure in Seg-Track2 and Davis respectively, 5.7% improvement in mean IoU in Synthia and 3.5% improvement in categorical mean IoU in CityScapes. The performance of the RFCN network depends on its baseline fully convolutional network. Thus RFCN architecture can be seen as a method to improve its baseline segmentation network by exploiting spatiotemporal information in videos.
Abstract-Parking management systems, and vacancyindication services in particular, can play a valuable role in reducing traffic and energy waste in large cities. Visual detection methods represent a cost-effective option, since they can take advantage of hardware usually already available in many parking lots, namely cameras. However, visual detection methods can be fragile and not easily generalizable. In this paper, we present a robust detection algorithm based on deep convolutional neural networks. We implemented and tested our algorithm on a large baseline dataset, and also on a set of image feeds from actual cameras already installed in parking lots. We have developed a fully functional system, from server-side image analysis to frontend user interface, to demonstrate the practicality of our method.
Scene understanding and object recognition is a difficult to achieve yet crucial skill for robots. Recently, Convolutional Neural Networks (CNN), have shown success in this task. However, there is still a gap between their performance on image datasets and real-world robotics scenarios. We present a novel paradigm for incrementally improving a robot's visual perception through active human interaction. In this paradigm, the user introduces novel objects to the robot by means of pointing and voice commands. Given this information, the robot visually explores the object and adds images from it to re-train the perception module. Our base perception module is based on recent development in object detection and recognition using deep learning. Our method leverages state of the art CNNs from off-line batch learning, human guidance, robot exploration and incremental on-line learning.
This paper proposes a novel image segmentation approach that integrates fully convolutional networks (FCNs) with a level set model. Compared with a FCN, the integrated method can incorporate smoothing and prior information to achieve an accurate segmentation. Furthermore, different than using the level set model as a post-processing tool, we integrate it into the training phase to fine-tune the FCN. This allows the use of unlabeled data during training in a semi-supervised setting. Using two types of medical imaging data (liver CT and left ventricle MRI data), we show that the integrated method achieves good performance even when little training data is available, outperforming the FCN or the level set model alone.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.