In situ alloying and fabricating glassy structures through a layer‐by‐layer fashion approach are challenging but have high potential to develop novel‐graded materials. For the first time, this cost‐effective approach is applied to additive manufacturing (AM) of a Zr‐based bulk metallic glass (BMG) from high‐entropy alloys (HEAs). A newly developed composition of Zr40Al20Cu20Ti20 is fabricated through laser powder bed fusion (LPBF). Process parameters are optimized within a wide range of laser power (50–200 W) as well as scanning speed (50–800 mm s−1). In all printed samples, microscopic and compositional examinations reveal no glass formation, but very fine grains and CuTi and AlTi nanocrystals. Some glassy transitions at the interfaces may be encouraged to occur with proper melting and mixing. However, the main reason for not obtaining a glassy matrix is the substantial proportion of unmelted Zr raw powder throughout the structure as spherical particles. Consequently, glass formation can be hindered by a considerable amount of compositional deviation. During LPBF, in situ alloying poses significant challenges to developing BMGs. Hence, the various stages of the process, including raw material specifications, laser settings, and process parameters, should be investigated further.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.