The bacterium Pseudomonas aeruginosa is an opportunistic pathogen in certain organisms, including humans, but can also survive and proliferate in natural and engineered water systems. Microfluidic technology can address hydrodynamic questions related to bacterial contamination of water flow systems and infrastructure. In this work, a microfluidic approach was devised to study the effect of shear stresses on biofilms from a dental unit waterline (DUWL)-isolated P. aeruginosa strain, PPF-1. During application of relevant shear stress levels to DUWLs, the response of the PPF-1 biofilm was observed and compared to a clinical P. aeruginosa reference strain, PAO1. The response measurements were repeated for biofilms exposed to additional Mg2+ ions. Using a microfluidic approach to transforming optical density maps into three-dimensional images, we applied computational fluid dynamics simulations and determined the critical shear stresses for biofilm sloughing. In the absence of Mg2+, PPF-1 biofilms showed weaker attachment than PAO1 biofilms, resulting in continuous slough/regrowth cycles triggered by applied shear stresses of 1.42 +/- 0.32 Pa. Introducing Mg2+ into the PPF-1 biofilm culture medium seemed to place the biofilm into a viscoplastic mechanical state, thereby increasing mechanical stability, which resulted in elevated tolerances to shear stresses up to a critical value of 5.43 +/- 1.52 Pa. This resulted in a propensity for less frequent but more catastrophic sloughing events like that observed for the PAO1 reference strain. This suggests that in a low ionic environment, biofilms from the PPF-1 strain can result in higher and more continuous ejection of biofilm materials, possibly leading to increased downstream colonization of engineered flow systems.
The bacterium Pseudomonas aeruginosa is an opportunistic pathogen in certain organisms, including humans, but can also survive and proliferate in natural and engineered water systems. Microfluidic technology can address hydrodynamic questions related to bacterial contamination of water flow systems and infrastructure. In this work, a microfluidic approach was devised to study the effect of shear stresses on biofilms from a dental unit waterline (DUWL)-isolated P. aeruginosa strain, PPF-1. During application of relevant shear stress levels to DUWLs, the response of the PPF-1 biofilm was observed and compared to a clinical P. aeruginosa reference strain, PAO1. The response measurements were repeated for biofilms exposed to additional Mg2+ ions. Using a microfluidic approach to transforming optical density maps into three-dimensional images, we applied computational fluid dynamics simulations and determined the critical shear stresses for biofilm sloughing. In the absence of Mg2+, PPF-1 biofilms showed weaker attachment than PAO1 biofilms, resulting in continuous slough/regrowth cycles triggered by applied shear stresses of 1.42 +/- 0.32 Pa. Introducing Mg2+ into the PPF-1 biofilm culture medium seemed to place the biofilm into a viscoplastic mechanical state, thereby increasing mechanical stability, which resulted in elevated tolerances to shear stresses up to a critical value of 5.43 +/- 1.52 Pa. This resulted in a propensity for less frequent but more catastrophic sloughing events like that observed for the PAO1 reference strain. This suggests that in a low ionic environment, biofilms from the PPF-1 strain can result in higher and more continuous ejection of biofilm materials, possibly leading to increased downstream colonization of engineered flow systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.