Al—(1, 3, 5, 7, 10 vol%) SiC nanocomposites were produced by mechanical alloying (MA) and double pressing/sintering route. The characteristics of the milled powders and the consolidate specimens were examined using high resolution scanning electron microscopy and X-ray diffraction method. Compression and hardness tests were used to study the effect of SiC volume fraction on the strength of Al—SiC nanocomposites. It was shown that with increasing the SiC volume fraction, finer particles with narrower size distribution and smaller crystallite size are obtained after MA. During sintering close to the melting point of aluminum, the presence of nanometer-scaled SiC particles was found to hinder the grain growth significantly. The Al matrix with a higher SiC content exhibited more potential for grain boundary pinning, i.e., smaller grain size was obtained at higher SiC volume fractions. Consequently, an improved mechanical strength was obtained. The processing method (MA/pressing/sintering) can be used for fabrication of near-net shape Al matrix nanocomposites.
Mixtures of aluminium powder and nanoscaled SiC particles (n-SiC) at various volume fractions of 0, 1, 3, 5, 7 and 10 are comilled in a high energy planetary ball mill under an argon atmosphere to produce nanocrystalline Al-SiC nanocomposites. High resolution scanning electron microscopy (HRSEM), X-ray diffraction (XRD) method, laser particle size analysis and powder density measurement were used to study the morphological changes and microstructural evolution occurred during mechanical alloying. Al-SiC composite powder with microscaled SiC particles (1 mm) was also synthesised and characterised to examine the influence of reinforcement particle size on the milling process. It was found that with increasing volume fraction of n-SiC, a finer composite powder with more uniform particle size distribution is obtained. The morphology of the particles also became more equiaxed at shorter milling times. Furthermore, the analysis of XRD patterns by Williamson-Hall method indicated that the crystallite size of the aluminium matrix decreases with increasing reinforcement volume content while the lattice strain changes marginally. As compared with microscaled SiC particles, it appeared that the effect of n-SiC on the milling stages is more pronounced. The results clearly show that the reinforcement particles influence the work hardening and fracture of the metal matrix upon milling, affecting the structural evolution. With decreasing size of the ceramic particles to nanoscale, this influence becomes more pronounced as the surface to volume fraction increases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.