The quest for reduced levelized cost of energy has driven significant growth in wind turbine size; however, larger rotors face significant technical and logistical challenges. The largest published rotor design is 25 MW, and here we consider an even larger 50 MW design with blade length over 250 m. This paper shows that a 50 MW design is indeed possible from a detailed engineering perspective and presents a series of aero-structural blade designs, and critical assessment of technology pathways and challenges for extreme-scale rotors. The 50 MW rotor design begins with Monte Carlo simulations focused on optimizing carbon spar cap and root design. A baseline design resulted in a 250-m blade with mass of 502 tonnes. Subsequently, an aero-structural design and optimization were performed to reduce the blade mass/cost with more than 25% mass reduction and 30% cost reduction by determining optimal blade chord and airfoil thickness for best aero-structural performance.
Wind turbine design encompasses many different aspects including aerodynamic, structural, electrical, and control system design. To achieve optimal plant performance, a system design approach is utilized in which the performance of the whole wind turbine is evaluated and quantified during operational scenarios with subsystem interactions. In this paper, the design for a Segmented Ultralight Morphing Rotor (SUMR) 50‐MW wind turbine is presented utilizing levelized cost of energy (LCOE) for design choices, with additional quantification of simulated performance shortcomings at the 50‐MW scale. The multi‐disciplinary design process results in a final ultra‐scale turbine configuration that outperforms other existing offshore wind farms regarding the LCOE.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.