PCSK9 is the last member of the proprotein convertases (PCs) family and its gene is mutated in ~ 2% to 3% of individuals with familial hypercholesterolemia (FH). This protein enhances the degradation of the low‐density lipoprotein receptor (LDLR) and hence increases the levels of circulating LDL‐cholesterol (LDLc). Studies of the underlying mechanism(s) regulating the activity of different mutations in the PCSK9 gene are ongoing as they enhance our understanding of the biology and clinical relevance of PCSK9 and its partners. In an attempt to unravel the regulation of PCSK9 transcription and possibly identify mutation ‘hot spot’ regions with alterations in CpG methylation, we present for the first time the complete methylome profile of the PCSK9 gene in modern and archaic humanoids. Our data showed that the genomes of modern humans and archaic PCSK9 exhibit a similar methylation pattern. Next, we defined the mechanistic consequences of three PCSK9 natural mutations (PCSK9‐R96L, ‐R105W, and ‐P174S) and one archaic Denisovan mutation (PCSK9‐H449L) using various complementary cellular and in vitro binding assays. Our results showed that the PCSK9‐H449L is a loss‐of‐function (LOF) mutation, likely due to its lower binding affinity to the LDLR. Similarly, PCSK9‐R96L and ‐R105W are LOF mutations, even though they have been identified in FH patients. The PCSK9‐R105W mutation leads to a significantly lower autocatalytic processing of proPCSK9. PCSK9‐P174S resulted in a LOF in both extracellular and intracellular pathways. In conclusion, our extensive analyses revealed that all studied mutations result in PCSK9 LOF, via various mechanisms, leading to lower levels of LDLc.
ObjectiveThe liver-derived circulating PCSK9 enhances the degradation of the LDL receptor (LDLR) in endosomes/lysosomes. PCSK9 inhibition or silencing is presently used in clinics worldwide to reduce LDL-cholesterol, resulting in lower incidence of cardiovascular disease and possibly cancer/metastasis. The mechanism by which the PCSK9-LDLR complex is sorted to degradation compartments is not fully understood. We previously suggested that out of the three M1, M2 and M3 subdomains of the C-terminal Cys/His-rich-domain (CHRD) of PCSK9, only M2 is critical for the activity of extracellular of PCSK9 on cell surface LDLR. This likely implicates the binding of M2 to an unknown membrane-associated “protein X” that would escort the complex to endosomes/lysosomes for degradation. We reported that a nanobody P1.40 binds the M1 and M3 domains of the CHRD and inhibits the function of PCSK9. It was also reported that the cytosolic adenylyl cyclase-associated protein 1 (CAP1) could bind M1 and M3 subdomains and enhance the activity of PCSK9. In this study, we determined the 3-dimensional structure of the CHRD-P1.40 complex to understand the intricate interplay between P1.40, CAP1 and PCSK9 and how they regulate LDLR degradation.MethodsX-ray diffraction of the CHRD-P1.40 complex was analyzed with a 2.2 Å resolution. The affinity and interaction of PCSK9 or CHRD with P1.40 or CAP1 was analyzed by atomic modeling, site-directed mutagenesis, bio-layer interferometry, expression in hepatic cell lines and immunocytochemistry to monitor LDLR degradation. The CHRD-P1.40 interaction was further analyzed by deep mutational scanning and binding assays to validate the role of predicted critical residues. Conformational changes and atomic models were obtained by small angle X-ray scattering (SAXS).ResultsWe demonstrate that PCSK9 exists in a closed or open conformation and that P1.40 favors the latter by binding key residues in the M1 and M3 subdomains of the CHRD. Our data show that CAP1 is well secreted by hepatic cells and binds extracellular PCSK9 at distinct residues in the M1 and M3 domains and in the acidic prodomain. CAP1 stabilizes the closed conformation of PCSK9 and prevents P1.40 binding. However, CAP1 siRNA only partially inhibited PCSK9 activity on the LDLR. By modeling the previously reported interaction between M2 and anR-X-Emotif in HLA-C, we identified Glu567and Arg549as the critical M2 residues binding HLA-C. Amazingly, these two residues are also required for the PCSK9-induced LDLR degradation.ConclusionsThe present study reveals that CAP1 enhances the function of PCSK9, likely by twisting the protein into a closed configuration that exposes the M2 subdomain needed for targeting the PCSK9-LDLR complex to degradation compartments. We hypothesize that “protein X”, which is expected to guide the LDLR-PCSK9-CAP1 complex to these compartments after endocytosis into clathrin-coated vesicles, is HLA-C or a similar MHC-I family member. This conclusion is supported by the PCSK9 natural loss-of-function Q554E and gain-of-function H553R M2 variants, whose consequences are anticipated by our modeling.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.