Mutations in POLG disrupt mtDNA replication and cause devastating diseases often with neurological phenotypes. Defining disease mechanisms has been hampered by limited access to human tissues, particularly neurons. Using patient cells carrying POLG mutations, we generated iPSCs and then neural stem cells. These neural precursors manifested a phenotype that faithfully replicated the molecular and biochemical changes found in patient post-mortem brain tissue. We confirmed the same loss of mtDNA and complex I in dopaminergic neurons generated from the same stem cells. POLG-driven mitochondrial dysfunction led to neuronal ROS overproduction and increased cellular senescence. Loss of complex I was associated with disturbed NAD + metabolism with increased UCP2 expression and reduced phosphorylated SirT1. In cells with compound heterozygous POLG mutations, we also found activated mitophagy via the BNIP3 pathway. Our studies are the first that show it is possible to recapitulate the neuronal molecular and biochemical defects associated with POLG mutation in a human stem cell model. Further, our data provide insight into how mitochondrial dysfunction and mtDNA alterations influence cellular fate determining processes.
The capacity of pluripotent stem cells both for self-renewal and to differentiate into any cell type have made them a powerful tool for studying human disease. Protocols for efficient differentiation towards cardiomyocytes using defined, serum-free culture medium combined with small molecules have been developed, but thus far, limited to larger formats. We adapted protocols for differentiating human pluripotent stem cells to functional human cardiomyocytes in a 96-well microplate format. The resulting cardiomyocytes expressed cardiac specific markers at the transcriptional and protein levels and had the electrophysiological properties that confirmed the presence of functional cardiomyocytes. We suggest that this protocol provides an incremental improvement and one that reduces the impact of heterogeneity by increasing inter-experimental replicates. We believe that this technique will improve the applicability of these cells for use in developmental biology and mechanistic studies of disease.
Given the considerable interest in using stem cells for modeling and treating disease, it is essential to understand what regulates self-renewal and differentiation. Remodeling of mitochondria and metabolism, with the shift from glycolysis to oxidative phosphorylation (OXPHOS), plays a fundamental role in maintaining pluripotency and stem cell fate. It has been suggested that the metabolic “switch” from glycolysis to OXPHOS is germ layer-specific as glycolysis remains active during early ectoderm commitment but is downregulated during the transition to mesoderm and endoderm lineages. How mitochondria adapt during these metabolic changes and whether mitochondria remodeling is tissue specific remain unclear. Here, we address the question of mitochondrial adaptation by examining the differentiation of human pluripotent stem cells to cardiac progenitors and further to differentiated mesodermal derivatives, including functional cardiomyocytes. In contrast to recent findings in neuronal differentiation, we found that mitochondrial content decreases continuously during mesoderm differentiation, despite increased mitochondrial activity and higher levels of ATP-linked respiration. Thus, our work highlights similarities in mitochondrial remodeling during the transition from pluripotent to multipotent state in ectodermal and mesodermal lineages, while at the same time demonstrating cell-lineage-specific adaptations upon further differentiation. Our results improve the understanding of how mitochondrial remodeling and the metabolism interact during mesoderm differentiation and show that it is erroneous to assume that increased OXPHOS activity during differentiation requires a simultaneous expansion of mitochondrial content.
Post-mitotic tissues with high-energy demand rely on ATP generated by the mitochondrial respiratory chain through the process of oxidative phosphorylation (OXPHOS). There is common agreement that mitochondrial content and OXPHOS activity increase as cells exit from pluripotency state to meet the higher energy requirement of differentiated tissues such as heart. In this study, we examined the hypothesis that mitochondrial expansion during differentiation is necessary to compensate for higher energy demand in differentiated cells. We assessed mitochondrial and cellular metabolism during differentiation of human pluripotent stem cells to cardiac progenitors and further to functional cardiomyocytes. Contrary to expectations, we found that mitochondrial content decreased progressively during mesoderm differentiation. Nevertheless, we found that there was increased mitochondrial activity and higher levels of ATP-linked respiration, which we suggest more than compensate for the lower mitochondrial number. Our findings support a model whereby mitochondrial maturation during cardiomyocyte differentiation depends on increased efficiency of ATP generation through OXPHOS not increased mitochondrial biogenesis. Thus, the timing of the mitochondria expansion during cardiomyocyte differentiation will have to be revisited in light of these findings.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.