Nonlinear ordinary differential equations (ODEs) are common in pharmacokinetic–pharmacodynamic systems. Although their exact solutions cannot generally be determined via algebraic methods, their rapid and accurate solutions are desirable. Thus, numerical methods have a critical role. Inductive Linearization was proposed as a method to solve systems of nonlinear ODEs. It is an iterative approach that converts a nonlinear ODE into a linear time-varying (LTV) ODE, for which a range of standard integration techniques can then be used to solve (e.g., eigenvalue decomposition [EVD]). This study explores the properties of Inductive Linearization when coupled with EVD for integration of the LTV ODE and illustrates how the efficiency of the method can be improved. Improvements were based on three approaches, (1) incorporation of a convergence criterion for the iterative linearization process (for simulation and estimation), (2) creating more efficient step sizes for EVD (for simulation and estimation), and (3) updating the initial conditions of the Inductive Linearization (for estimation). The performance of these improvements were evaluated using single subject stochastic simulation-estimation with an application to a simple pharmacokinetic model with Michaelis–Menten elimination. The reference comparison was a standard non-stiff Runge–Kutta method with variable step size (ode45, MATLAB). Each of the approaches improved the speed of the Inductive Linearization technique without diminishing accuracy which, in this simple case, was faster than ode45 with comparable accuracy in the parameter estimates. The methods described here can easily be implemented in standard software programme such as R or MATLAB. Further work is needed to explore this technique for estimation in a population approach setting.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.