Angiogenesis, inflammation and endothelial cells’ migration and proliferation exert fundamental roles in different diseases. However, more studies are needed to identify key proteins and pathways involved in these processes. Aflibercept has received the approval of the US Food and Drug Administration (FDA) for the treatment of wet AMD and colorectal cancer. Moreover, the effect of Aflibercept on VEGFR2 downstream signalling pathways has not been investigated yet. Here, we integrated text mining data, protein‐protein interaction networks and multi‐experiment microarray data to specify candidate genes that are involved in VEGFA/VEGFR2 signalling pathways. Network analysis of candidate genes determined the importance of the nominated genes via different centrality parameters. Thereupon, several genes—with the highest centrality indexes—were recruited to investigate the impact of Aflibercept on their expression pattern in HUVEC cells. Real‐time PCR was performed, and relative expression of the specific genes revealed that Aflibercept modulated angiogenic process by VEGF/PI3KA/AKT/mTOR axis, invasion by MMP14/MMP9 axis and inflammation‐related angiogenesis by IL‐6‐STAT3 axis. Data showed Aflibercept simultaneously affected these processes and determined the nominated axes that had been affected by the drug. Furthermore, integrating the results of Aflibercept on expression of candidate genes with the current network analysis suggested that resistance against the Aflibercept effect is a plausible process in HUVEC cells.
In retinal degenerative disorders, when neural retinal cells are damaged, cell transplantation is one of the most promising therapeutic approaches. Optogenetic technology plays an essential role in the neural differentiation of stem cells via membrane depolarization. This study explored the efficacy of blue light stimulation in neuroretinal differentiation of Opto‐mGluR6‐engineered mouse retinal pigment epithelium (mRPE) and bone marrow mesenchymal stem cells (BMSCs). mRPE and BMSCs were selected for optogenetic study due to their capability to differentiate into retinal‐specific neurons. BMSCs were isolated and phenotypically characterized by the expression of mesenchymal stem cell‐specific markers, CD44 (99%) and CD105 (98.8%). mRPE culture identity was confirmed by expression of RPE‐specific marker, RPE65, and epithelial cell marker, ZO‐1. mRPE cells and BMSCs were transduced with AAV‐MCS‐IRES‐EGFP‐Opto‐mGluR6 viral vector and stimulated for 5 days with blue light (470 nm). RNA and protein expression of Opto‐mGluR6 were verified. Optogenetic stimulation‐induced elevated intracellular Ca2+ levels in mRPE‐ and BMS‐treated cells. Significant increase in cell growth rate and G1/S phase transition were detected in mRPE‐ and BMSCs‐treated cultures. Pou4f1, Dlx2, Eomes, Barlh2, Neurod2, Neurod6, Rorb, Rxrg, Nr2f2, Ascl1, Hes5, and Sox8 were overexpressed in treated BMSCs and Barlh2, Rorb, and Sox8 were overexpressed in treated mRPE cells. Expression of Rho, Thy1, OPN1MW, Recoverin, and CRABP, as retinal‐specific neuron markers, in mRPE and BMS cell cultures were demonstrated. Differentiation of ganglion, amacrine, photoreceptor cells, and bipolar and Muller precursors were determined in BMSCs‐treated culture and were compared with mRPE. mRPE cells represented more abundant terminal Muller glial differentiation compared with BMSCs. Our results also demonstrated that optical stimulation increased the intracellular Ca2+ level and proliferation and differentiation of Opto‐mGluR6‐engineered BMSCs. It seems that optogenetic stimulation of mRPE‐ and BMSCs‐engineered cells would be a potential therapeutic approach for retinal degenerative disorders.
Entrepreneurship education is becoming increasingly important in engineering schools. This is a trend that started several years ago in the U.S. and is also spreading internationally. This trend appears to be due to the fact that engineers are responsible for providing solutions to enhance the quality of life for people worldwide and for facing the challenges related to that responsibility. As society develops we face new challenges, which call for varied and innovative approaches to solve these problems. This is further confirmed by the National Academy of Engineers' book titled "The Engineer of 2020", which the clearly discusses the changing role of the engineer in 2020 7
Background About 90% of cancer-related deaths are due to metastasis of cancer cells, and angiogenesis is a critical step in this process. sFLT01 is a novel fusion protein and a dual-targeting agent that neutralizes both VEGF and PlGF proangiogenic activities. GRP78 dual effect in tumor growth and angiogenesis could be activated under VEGF stimulation. The current study was designed to investigate the inhibitory impact of sFLT01 protein on VEGF/GRP78 axis. To this point, sFLT01 construct was synthesized, recombinant plasmid was expressed in eukaryotic host cells, sFLT01-HisTag protein was extracted and analyzed. The functional activity of sFLT01 on VEGF-enhanced tube formation and angiogenesis of HUVEC cells were examined. Eventually, the inhibitory impact of sFLT01 on growth, invasiveness, and migration of human prostate cancer cell line, DU145, was assessed. Real-time PCR evaluated the level of GRP78 and its effect on the downstream factors; matrix metallopeptidase proteins 2&9 (MMP2&9) along with tissue inhibitor of metalloproteinase proteins1&2 (TIMP1&2) under sFLT01 stimulation. Results According to the data, sFLT01 protein showed modulatory impact on proliferation, invasion, and migration of DU145 cells along with the potential of HUVECs angiogenesis. Real-Time PCR analysis depicted a significant downregulation in GRP78, MMP2 and MMP9 transcripts’ levels, and a subsequent elevation of TIMP1 and TIMP2 expression under sFLT01 stimulation was detected. Conclusion Overall, these data indicated that the inhibitory impact of sFLT01 on cancer cells growth and invasiveness could be mediated through the modulation of VEGF/GRP78/MMP2&9 axis and activation of TIMPs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.