Abstract. The concepts of boundary relations and the corresponding Weyl families are introduced. Let S be a closed symmetric linear operator or, more generally, a closed symmetric relation in a Hilbert space H, let H be an auxiliary Hilbert space, let
The foundations of this outstanding book series were laid in 1944. Until the end of the 1970s, a total of 77 volumes appeared, including works of such distinguished mathematicians as Carathéodory, Nevanlinna and Shafarevich, to name a few. The series came to its name and present appearance in the 1980s. In keeping its well-established tradition, only monographs of excellent quality are published in this collection. Comprehensive, in-depth treatments of areas of current interest are presented to a readership ranging from graduate students to professional mathematicians. Concrete examples and applications both within and beyond the immediate domain of mathematics illustrate the import and consequences of the theory under discussion.
The Kre\u{\i}n-Naimark formula provides a parametrization of all selfadjoint exit space extensions of a, not necessarily densely defined, symmetric operator, in terms of maximal dissipative (in $\dC_+$) holomorphic linear relations on the parameter space (the so-called Nevanlinna families). The new notion of a boundary relation makes it possible to interpret these parameter families as Weyl families of boundary relations and to establish a simple coupling method to construct the generalized resolvents from the given parameter family. The general version of the coupling method is introduced and the role of boundary relations and their Weyl families for the Kre\u{\i}n-Naimark formula is investigated and explained.Comment: 47 page
A nonnegative form t on a complex linear space is decomposed with respect to another nonnegative form w: it has a Lebesgue decomposition into an almost dominated form and a singular form. The part which is almost dominated is the largest form majorized by t which is almost dominated by w. The construction of the Lebesgue decomposition only involves notions from the complex linear space. An important ingredient in the construction is the new concept of the parallel sum of forms. By means of Hilbert space techniques the almost dominated and the singular parts are identified with the regular and a singular parts of the form. This decomposition addresses a problem posed by B. Simon. The Lebesgue decomposition of a pair of finite measures corresponds to the present decomposition of the forms which are induced by the measures. T. Ando's decomposition of a nonnegative bounded linear operator in a Hilbert space with respect to another nonnegative bounded linear operator is a consequence. It is shown that the decomposition of positive definite kernels involving families of forms also belongs to the present context. The Lebesgue decomposition is an example of a Lebesgue type decomposition, i.e., any decomposition into an almost dominated and a singular part. There is a necessary and sufficient condition for a Lebesgue type decomposition to be unique. This condition is inspired by the work of Ando concerning uniqueness questions.
With a closed symmetric operator A in a Hilbert space a triple of a Hilbert space and two abstract trace operators Γ0 and Γ1 from to is called a generalized boundary triple for if an abstract analogue of the second Green's formula holds. Various classes of generalized boundary triples are introduced and corresponding Weyl functions are investigated. The most important ones for applications are specific classes of boundary triples for which Green's second identity admits a certain maximality property which guarantees that the corresponding Weyl functions are Nevanlinna functions on , i.e. , or at least they belong to the class of Nevanlinna families on . The boundary condition determines a reference operator . The case where A0 is selfadjoint implies a relatively simple analysis, as the joint domain of the trace mappings Γ0 and Γ1 admits a von Neumann type decomposition via A0 and the defect subspaces of A. The case where A0 is only essentially selfadjoint is more involved, but appears to be of great importance, for instance, in applications to boundary value problems e.g. in PDE setting or when modeling differential operators with point interactions. Various classes of generalized boundary triples will be characterized in purely analytic terms via the Weyl function and close interconnections between different classes of boundary triples and the corresponding transformed/renormalized Weyl functions are investigated. These characterizations involve solving direct and inverse problems for specific classes of operator functions . Most involved ones concern operator functions for which defines a closable nonnegative form on . It turns out that closability of does not depend on and, moreover, that the closure then is a form domain invariant holomorphic function on while itself need not be domain invariant. In this study we also derive several additional new results, for instance, Kreĭn‐type resolvent formulas are extended to the most general setting of unitary and isometric boundary triples appearing in the present work.In part II of the present work all the main results are shown to have applications in the study of ordinary and partial differential operators.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.