The effects of various dietary fibres on gut health have been studied extensively but their combined effects are scarcely documented. In the present study the effects of 2 % (w/w) polydextrose (PDX), 2 % (w/w) disaccharide lactitol, or 2 % (w/w) PDXþ2 % (w/w) lactitol on gut microflora, microbial metabolism and gut immune responses were investigated in rats. Both PDX and lactitol alone had an effect on many of the studied parameters, but their combination had stronger than additive effects in some parameters. The PDXþ lactitol combination altered the microbial community structure as seen by a culture-independent method, percentage guanineþ cytosine (%GþC) profiling, increasing the areas of %GþC 35 -39 (P,0·0001) and %GþC 45 -49 (P¼ 0·0002), and decreasing %GþC 65 -74 (P,0·0003). These changes were also reflected in the microbial metabolism so that the production of biogenic amines and branched volatile fatty acids was significantly reduced, by 12 (P¼0·03) and 50 % (P¼0·002), respectively, indicating a shift from putrefactive towards saccharolytic metabolism. PDX increased the secretion of IgA in the caecum (P¼ 0·007). Secretion of IgA increased even more, almost ten-fold, with the combination of PDXþlactitol (P,0·0001) when compared with the control group. Lactitol increased the production of butyrate by caecal microbes by two-to three-fold when compared with the PDX or control group (P,0·0001). Butyrate is a preferred energy source for mucosal cells; thus a boost in the availability of energy for immune cells may have still added to the synergistic effects of PDX and lactitol on immune cells. It is noteworthy that improvement in the IgA secretion occurred without signs of mucosal inflammation.Polydextrose: Lactitol: Microbial metabolism: Immunoglobulin A
Betaine and its precursor choline were compared in their efficiency in affecting the performance, carcass traits, and liver betaine concentration of growing-finishing pigs. Individually penned Finnish Landrace and Yorkshire pigs and their crosses (30 kg; no. = 70) were offered the basal diet with no added betaine or choline, or the basal diet supplemented with low to moderate doses (250, 500 or 1000 mg/kg) of betaine (Betafin® S1), or with a similar molar amount of choline (578, 1155 or 2310 mg/kg of choline chloride). The maize-soya-bean-meal basal diet was formulated to contain 12·3 MJ/kg digestible energy, 155 g/kg crude protein and 7·4, 4·4 and 4·3 g/kg digestible lysine, threonine and methionine + cystine, respectively. Oat hull meal (100 g/kg) was added to reduce the dietary energy concentration. The pigs were on a restricted feeding level, 1·5 to 3·0 kg food per day (proportionately 0·8 of ad libitum intake) for 75 days. Daily weight gain and food-to-gain ratio improved linearly (P < 0·01) with increasing dietary betaine. Carcass weight increased linearly (P < 0·01) but slaughter loss proportion, backfat and sidefat thicknesses and lean proportions in ham and carcass were unaffected by dietary betaine level. Liver betaine level increased linearly (by up to a proportion of 0·62 in comparison with the control) with dietary betaine addition (F < 0·05) and betaine tended to improve linearly the tensile strength of the proximal ileum (P = 0·07). The presence of choline had no effect on any of these parameters. These results indicate that low to moderate doses of dietary betaine improved the growth and the efficiency of food utilization of growing-finishing pigs. Pigs on betaine diets had heavier carcasses without a relative increase in carcass fat. Choline had no such effects in pigs offered the restricted amount of diet. Liver betaine concentration increased with level of betaine in the diet whereas the betaine precursor choline did not affect hepatic betaine.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.