Rheology and FTIR spectroscopy are compared as methods to study the degree of photodegradation in polypropylene (PP) and polystyrene (PS) sheets. The materials are hot pressed, artificially photo-aged with fluorescent lights for 4-2048 h and then measured with a rotational rheometer and FTIR. Both materials show a tendency for chain scission which can be seen as a reduction in viscosity. Changes in PP can be observed with both methods after 256 h of irradiation. Changes in PS become significant in rheology after 64 h but in FTIR only after 1024 h of irradiation. Due to the different chemical nature of the materials, the degradation of PS is rather linear with exposure, whereas the degradation of PP is more exponential. Using the zero shear viscosities obtained through extrapolations of the Cole-Cole and Carreau-Yasuda models, relative molecular weights are estimated with the aid of the power-law relationship between these two. These results are compared with the carbonyl indices determined from the FTIR spectra. Rheology is found to be a viable alternative for FTIR in certain situations.
The morphology and rheological and mechanical properties of nanoclay-reinforced polypropylene nanocomposites were investigated with aid of transmission electron microscopy (TEM), thermo gravimetric analysis, rheometry, and mechanical tests. The organically modified silicate (montmorillonite) was used as a reinforcing material and maleic anhydride-grafted polypropylene oligomer as a compatibilizer to improve the clay dispersion and adhesion. The object of the study was to examine the effect of screw speed of the co-rotating twin-screw extruder on the clay exfoliation and nanocomposite properties. Also, the effect of compatibilizing agent was taken into account. The main result of the study was that nanocomposites showed both intercalated and exfoliated structures depending on the screw speeds of extruder. TEM images revealed that the dispersion of silicate layers was greatly influenced by the screw speed. However, even when the silicate layers were highly exfoliated, there was no remarkable effect on mechanical properties of the nanocomposite. POLYM. ENG. SCI., 46:995-1000, 2006.
The sedimentation stability and rheological properties of ionic liquid-based magnetorheological fluids comprising a mixture of micron-and nano-sized particles were experimentally studied. Three different fluids with the same total particle concentration of 15 vol% were prepared for testing: one containing only microparticles and two others in which 5 or 10 wt% of the microparticles were replaced by nanoparticles. The nanoparticles were surface stabilized against oxidation. For comparison purposes, silicon oil-based magnetorheological fluids with similar solid fractions were also prepared and tested. The results indicate that, with ionic liquid as a carrier fluid, the addition of nanoparticles at 10 wt% reduces the sedimentation rate almost by an order of magnitude from that without nanoparticles, while the reduction in the dynamic yield stress is only marginal. The ionic liquid-based fluids also had a better dispersion of particles.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.