Dalam proses pengembangan maupun pengujian perangkat lunak, faktor usability merupakan aspek yang paling penting. Evaluasi faktor usability tersebut dapat dilakukan dengan menganalisa orientasi sentimen pada opini pengguna berdasarkan faktor usability. Namun, setiap opini juga memiliki tingkat sentimen yang mencerminkan tinggi rendahnya orientasi sentimen, sehingga akan lebih efektif apabila tingkat sentimen juga dipertimbangkan dalam proses evaluasi. Selain itu, opini pengguna juga dapat memiliki lebih dari 1 faktor usability. Hal tersebut dikarenakan setiap dokumen opini dapat terdiri lebih dari 1 kalimat dimana setiap kalimat bisa memiliki faktor usability yang berbeda. Berbeda dengan perangkat lunak lainnya, aplikasi mobile memiliki batasan dan konteks tersendiri. Sehingga model usability yang digunakan juga berbeda dengan perangkat lunak lainnya. Model PACMAD merupakan model usability yang disesuaikan dengan batasan dan konteks dari aplikasi mobile. Oleh karena itu dalam penelitian ini diusulkan suatu metode evaluasi faktor usability dengan menggunakan klasifikasi multi class pada analisis sentimen dengan mempertimbangkan tingkat sentimen opini pengguna aplikasi mobile berdasarkan model usability PACMAD. Data opini pengguna dikaslifikasian dengan model klasifikasi multi class dengan metode naive bayes, kemudian dianalisis orientasi dan tingkat sentimennya dengan menggunakan metode SentiWordNet Interpretation. Berdasarkan hasil ujicoba diperoleh nilai akurasi sebesar 74,7%, precision 43,2%, recall 29,5% dan f-measure 34,5%.
Pengguna internet di Indonesia berkembang pesat mampu mengubah gaya hidup masyarakat. Masyarakat memanfaatkan internet untuk mengakses informasi pada berita online. Berita online yang beragam jenis dan kategori membuat penyedia layanan berita online harus menyediakan informasi sesuai dengan permintaan pengguna. Pada paper ini menjelaskan proses pengkategorian berita online secara otomatis. Tujuan pengkategorian secara otomatis untuk mempermudah penyedia layanan dalam membuat sebuah berita. Proses pengkategorian berita secara otomatis menggunakan metode probabilistyc laten semantic analysis (PLSA). Dari 60 dokumen berita sebagai dataset yang diambil pada tiga berita online : kompas, sidomi, liputan6 menghasilkan 4 kelompok kategori (labels) berita. Sehingga dapat disimpulkan dengan metode PLSA mampu menghasilkan nilai presisi tertinggi sebesar 0,68 dengan iterasi sebanyak 300 kali
Dalam proses pencarian dokumen, pengguna sering menginginkan hasil pencarian yang sesuai dengan preferensi yang diinginkannya. Maka, untuk memperoleh hasil pencarian yang sesuai dengan preferensi tersebut dibutuhkan suatu metode pembobotan kata yang didasarkan pada preferensi tersebut. Metode pembobotan tersebut perlu mempertimbangkan hubungan semantik antar kata untuk meningkatkan relevansi hasil pencarian. Dalam penelitian ini diusulkan metode pembobotan kata berbasis preferensi berdasarkan hubungan semantik antar kata pada dokumen fiqih berbahasa Arab. Latent Semantic Indexing merupakan salah satu metode indexing dalam sistem temu kembali informasi yang mempertimbangkan hubungan semantik antar kata. Hasil pembobotan kata berdasarkan preferensi dijadikan sebuah matriks untuk perhitungan Latent Semantic Indexing yang menghasilkan sebuah vektor. Vektor tersebut dihitung similaritasnya antara vektor query dengan vektorvektor dokumen yang ada. Metode pembobotan kata berbasis preferensi yang mempertimbangkan hubungan semantik antar kata dapat digunakan dalam perankingan dokumen fiqih bahasa Arab berbasis preferensi. Hal tersebut dapat dilihat dari nilai maksimal precision, recall dan f-measure yang meningkat menjadi 88.75 %,
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.