Decomposition of the resin linkers during TFA cleavage of the peptides in the Fmoc strategy leads to alkylation of sensitive amino acids. The C-terminal amide alkylation, reported for the first time, is shown to be a major problem in peptide amides synthesized on the Rink amide resin. This side reaction occurs as a result of the Rink amide linker decomposition under TFA treatment of the peptide resin. The use of 1,3-dimethoxybenzene in a cleavage cocktail prevents almost quantitatively formation of C-terminal N-alkylated peptide amides. Oxidized by-product in the tested Cys- and Met-containing peptides were not observed, even if thiols were not used in the cleavage mixture.
Paclitaxel (Pac) is the most important anticancer drug used mainly in treatment of breast, lung, and ovarian cancer and is being investigated for use as a single agent for treatment of lung cancer, advanced head and neck cancers, and adenocarcinomas of the upper gastrointestinal tract. In this work, we present the synthesis of five 2'-paclitaxel-substituted analogs in which paclitaxel was covalently bound to peptides or as multiple copies to synthetic carriers. Ac-Cys(CH(2)CO-2'-Pac)-Arg-Gly-Asp-Arg-NH(2), Folyl-Cys(CH(2)CO-2'-Pac)-Arg-Gly-Asp-Ser-NH(2), Ac-[Lys-Aib-Cys(CH(2)CO-2'-Pac)](2)-NH(2), Ac-[Lys-Aib-Cys(CH(2)CO-2'-Pac)](3)-NH(2) and Ac-[Lys-Aib-Cys(CH(2)CO-2'-Pac)](4)-NH(2) were synthesized using 2'-halogeno-acetylated paclitaxel derivatives. Paclitaxel conjugates showed greater solubility in water than paclitaxel and inhibited the proliferation of human breast, prostate, and cervical cancer cell lines. Although all synthesized compounds had an antiproliferative activity, the Ac-[Lys-Aib-Cys(CH(2)CO-2'-Pac)](4)-NH(2) derivative showed improved biological activity in comparison with paclitaxel in cervical and prostate human cancer cells.
Alkylation of sensitive amino acids during synthesis of biologically important peptides is a common and well-documented problem in Fmoc-based strategy. Herein, we probed for the first time an unexpected S-alkylation of Cys-containing peptides that occur during the final TFA cleavage of peptides from the Wang solid support. Through a battery of approaches (NMR, UV and LC-MS) the formed by-product was assigned as the alkylation of the cysteine sulfydryl group by the p-hydroxyl benzyl group derived from the acidic Wang linker decomposition. Factors affecting this side reaction were monitored and a protocol that minimizes the presence of the by-product is reported.
The undesirable reaction of aspartimide formation has been proved to occur under both acid and base conditions in solid-phase peptide synthesis and is dependent on the beta-carboxyl protecting group, the acid or base used during the synthesis, as well as the peptide sequence. The hydrolysis of aspartimide-containing peptides, especially during HPLC purification, yields a mixture of alpha- and beta-aspartyl peptides that can not be purified easily. A previous study demonstrated that treatment of aspartimide-containing peptides with methanol in the presence of 2% diisopropylethylamine in solution leads to alpha- and beta-aspartyl peptide methyl esters. Taking advantage of these results and aiming at elucidating the optimal conditions for aspartimide ring opening, the effect of different types and concentrations of alcohols (primary and secondary) and bases (diisopropylethylamine, collidine, 4-pyrrolidinopyridine, 1-methyl-2-pyrrolidone, piperidine and KCN) was tested at various temperatures and reaction times. The best results were obtained with a combination of a primary alcohol and diisopropylethylamine, while aspartimide ring opening by secondary alcohols occurred only at high temperatures. The optimal conditions were also applied to solid-phase peptide synthesis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.