The development of accurate and fast methods for real-time electrocardiogram (ECG) analysis is mandatory in handheld fully automated monitoring devices for high-risk cardiac patients. The present work describes a simple software method for fast detection of pathological cardiac events. It implements real-time procedures for QRS detection, interbeat RR-intervals analysis, QRS waveform evaluation and a decision-tree beat classifier. Two QRS descriptors are defined to assess (i) the RR interval deviation from the mean RR interval and (ii) the QRS waveform deviation from the QRS pattern of the sustained rhythm. The calculation of the second parameter requires a specific technique, in order to satisfy the demand for straight signal processing with minimum iterations and small memory size. This technique includes fast and resource efficient estimation of a histogram matrix, which accumulates dynamically the amplitude-temporal distribution of the successive QRS pattern waveforms. The pilot version of the method is developed in Matlab and it is tested with internationally recognized ECG databases. The assessment of the online single lead QRS detector showed sensitivity and positive predictivity of above 99%. The classification rules for detection of pathological ventricular beats were defined empirically by statistical analysis. The attained specificity and sensitivity are about 99.5% and 95.7% for all databases and about 99.81% and 98.87% for the noise free dataset. The method is applicable in low computational cost systems for long-term ECG monitoring, such as intelligent holters, automatic event/alarm recorders or personal devices with intermittent wireless data transfer to a central terminal.
The present work describes fast computation methods for real-time digital filtration and QRS detection, both applicable in autonomous personal ECG systems for long-term monitoring. Since such devices work under considerable artifacts of intensive body and electrode movements, the input filtering should provide high-quality ECG signals supporting the accurate ECG interpretation. In this respect, we propose a combined high-pass and power-line interference rejection filter, introducing the simple principle of averaging of samples with a predefined distance between them. In our implementation (sampling frequency of 250 Hz), we applied averaging over 17 samples distanced by 10 samples (Filter10x17), thus realizing a comb filter with a zero at 50 Hz and high-pass cut-off at 1.1 Hz. Filter10x17 affords very fast filtering procedure at the price of minimal computing resources. Another benefit concerns the small ECG distortions introduced by the filter, providing its powerful application in the preprocessing module of diagnostic systems analyzing the ECG morphology. Filter10x17 does not attenuate the QRS amplitude, or introduce significant ST-segment elevation/depression. The filter output produces a constant error, leading to uniform shifting of the entire P-QRS-T segment toward about 5% of the R-peak amplitude. Tests with standardized ECG signals proved that Filter10x17 is capable to remove very strong baseline wanderings, and to fully suppress 50 Hz interferences. By changing the number of the averaged samples and the distance between them, a filter design with different cut-off and zero frequency could be easily achieved. The real-time QRS detector is designed with simplified computations over single channel, low-resolution ECGs. It relies on simple evaluations of amplitudes and slopes, including history of their mean values estimated over the preceding beats, smart adjustable thresholds, as well as linear logical rules for identification of the R-peaks in real-time. The performance of the QRS detector was tested with internationally recognized ECG databases (AHA, MIT-BIH, European ST-T database), showing mean sensitivity of 99.65% and positive predictive value of 99.57%. The performance of the presented QRS detector can be highly rated, comparable and even better than other published real-time QRS detectors. Examples representing some typical unfavorable conditions in real ECGs, illustrate the common operation of Filter10x17 and the QRS detector.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.