The effects of grain refining in ultra-pure aluminum, commercially pure aluminum (1050), and Al-7%Si binary alloy were investigated, using different additions of Al-10%Ti, Al-5%Ti-1%B, and Al-4%B master alloys. Thermal analysis and metallography were used to assess the variations in microstructure resulting from these additions, at solidification rates of 0.8°C/s and ~10°C/s. The results revealed that addition of Al-4%B to ultra-pure aluminum forms AlB 12 and AlB 2 which have no grain-refining effect. Without grain refiner addition, the pure aluminum microstructure exhibits a mixture of columnar and equiaxed grains. Addition of 30ppm Ti is sufficient to promote equiaxed grains at ~10°C/s but requires addition of 1000 ppm B to obtain similar results at 0.8°C/s. Increasing the Si content to 7% reduces the initial grain size of pure aluminum from 2800 μm to ~1850 μm, and further to 450 μm with ddition of ~500ppm B. In commercial aluminum, the B reacts with traces of Ti forming Al 3 Ti and TiB 2 phases which are active grain-refiners. In Al-7%Si, Ti reacts with Si forming (Al,Si) 2 Ti phase, which is a poor refining agent. This phenomenon is termed poisoning. No interaction between B and Si is observed in the commercial aluminum or Al-7%Si alloy when B is added.
There is direct proportionality between ultimate tensile stress (UTS) and residual stresses (RS). Residual stresses gradually decrease with decreasing cooling/quenching rates. Quenching in cold water develops highest, whereas air cooling produces lowest, residual stresses. Significant increase in RS is observed in specimens with low dendrite arm spacing (high solidification rate), while lower residual stresses are measured in specimens with high dendrite arm spacing (low solidification rate). For I-4 and V-6 engine blocks, there is refinement in microstructure due to the increase in solidification rate along the cylinder length. The developed residual stresses are normally tensile in both engine types. Air cooling following solution heat treatment produces higher RS compared to warm water and cold water quenching. Solution heat treatment and freezing lead to maximum RS relaxation where 50% of the stresses are reduced after the solution heat treatment step. Aging time and temperature are directly proportional to the residual stresses relaxation. Relaxation of RS also depends on the geometry and size of the workpiece. It should be mentioned here that the I-4 and V-6 cylinder blocks were provided by Nemak-Canada (Windsor-Ontario-Canada). Residual stress measurements technique and procedure are typical of those used by the automotive industry in order to provide reliable data for industrial applications supported by intensive experiments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.