Computer vision and deep learning approaches have an important role in industrial inspection systems. Computer vision technology is essential for fast, defect-free control of products in the production line. The importance of the computer vision concept is recognized when the problems of the classical methods are taken into consideration. Metallic defect detection is a challenging problem as metal surfaces are easily affected by environmental factors such as lighting and light reflection. Since traditional detection algorithms are inefficient in complex problems, we propose a novel method to detect and classify metal surface defects, such as cracks, scratches, inclusion, etc. The type and location of defects were detected by the Faster Regional Convolutional Neural Network (Faster R-CNN), combined with the Shape From Shading (SFS) method, which can extract surface characteristics. The Northeastern University (NEU) surface defect database was used for defective samples. The proposed algorithm has also been tested on an unlabeled dataset (KolektorSDD2/KSDD2) to show labeling performance. The results on both labeled and unlabeled datasets have demonstrated state-of-the-art performance in automatic defect detection, classification, and labeling. The proposed method has satisfactory results for the detection of defects on the metal surface, and the mean average precision is 0.83. The average precision of crazing, pitted surface, patches, scratches, inclusion, and rolled-in scale are 0.96, 0.93, 0,89, 0.80, 0.72, and 0.71, respectively.
Skin cancer has emerged as a grave health concern leading to significant mortality rates. Diagnosis of this disease traditionally relies on specialist dermatologists who interpret dermoscopy images using the ABCD rule. However, the integration of computer-aided diagnosis technologies is gaining popularity as a means to assist clinicians in accurate skin cancer diagnosis, overcoming potential challenges associated with human error. The objective of this research is to develop a robust system for the detection of skin cancer by employing machine learning algorithms for skin lesion classification and detection. The proposed system utilizes Convolutional Neural Network (CNN), a highly accurate and efficient deep learning technique well-suited for image classification tasks. By using the power of CNN, this system effectively classifies various skin diseases in dermoscopic images associated with skin cancer The MNIST HAM10000 dataset, comprising 10015 images, serves as the foundation for this study. The dataset encompasses seven distinct skin diseases falling within the realm of skin cancer. In this study, diverse transfer learning methods were used and evaluated to enhance the performance of the system. By comparing and analyzing these approaches, the study aimed to identify the most effective strategies for accurate skin disease classification in dermoscopic images.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.