Fire hazard is a condition that has potentially catastrophic consequences. Artificial intelligence, through Computer Vision, in combination with UAVs has assisted dramatically to identify this risk and avoid it in a timely manner. This work is a literature review on UAVs using Computer Vision in order to detect fire. The research was conducted for the last decade in order to record the types of UAVs, the hardware and software used and the proposed datasets. The scientific research was executed through the Scopus database. The research showed that multi-copters were the most common type of vehicle and that the combination of RGB with a thermal camera was part of most applications. In addition, the trend in the use of Convolutional Neural Networks (CNNs) is increasing. In the last decade, many applications and a wide variety of hardware and methods have been implemented and studied. Many efforts have been made to effectively avoid the risk of fire. The fact that state-of-the-art methodologies continue to be researched, leads to the conclusion that the need for a more effective solution continues to arouse interest.
This paper highlights the trends in the field of predictive maintenance with the use of machine learning. With the continuous development of the Fourth Industrial Revolution, through IoT, the technologies that use artificial intelligence are evolving. As a result, industries have been using these technologies to optimize their production. Through scientific research conducted for this paper, conclusions were drawn about the trends in Predictive Maintenance applications with the use of machine learning bridging Artificial Intelligence and IoT. These trends are related to the types of industries in which Predictive Maintenance was applied, the models of artificial intelligence were implemented, mainly of machine learning and the types of sensors that are applied through the IoT to the applications. Six sectors were presented and the production sector was dominant as it accounted for 54.54% of total publications. In terms of artificial intelligence models, the most prevalent among ten were the Artificial Neural Networks, Support Vector Machine and Random Forest with 27.84%, 17.72% and 13.92% respectively. Finally, twelve categories of sensors emerged, of which the most widely used were the sensors of temperature and vibration with percentages of 60.71% and 46.42% correspondingly.
Motor Imagery Brain Computer Interfaces (MI-BCIs) are systems that receive the users’ brain activity as an input signal in order to communicate between the brain and the interface or an action to be performed through the detection of the imagination of a movement. Brainwaves’ features are crucial for the performance of the interface to be increased. The robustness of these features must be ensured in order for the effectiveness to remain high in various subjects. The present work consists of a review, which includes scientific publications related to the use of robust feature extraction methods in Motor Imagery from 2017 until today. The research showed that the majority of the works focus on spatial features through Common Spatial Patterns (CSP) methods (44.26%). Based on the combination of accuracy percentages and K-values, which show the effectiveness of each approach, Wavelet Transform (WT) has shown higher robustness than CSP and PSD methods in the majority of the datasets used for comparison and also in the majority of the works included in the present review, although they had a lower usage percentage in the literature (16.65%). The research showed that there was an increase in 2019 of the detection of spatial features to increase the robustness of an approach, but the time-frequency features, or a combination of those, achieve better results with their increase starting from 2019 onwards. Additionally, Wavelet Transforms and their variants, in combination with deep learning, manage to achieve high percentages thus making a method robustly accurate.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.