Convolutional Neural Networks (CNNs) have been established as a powerful class of models for image recognition problems. Despite their success in other areas, CNNs have been applied only for very limited agricultural applications due to the need for large datasets. The aim of this research is to design a robust CNN model that classifies raw coffee beans into their 12 quality grades using small datasets which have high data variability. The dataset contains images of raw coffee beans acquired in two sets using different acquisition technique under varying illuminations which poses a complex challenge to designing a robust model. To design the model, preprocessing techniques were applied to the input in order to reduce task irrelevant features. But adding the preprocessing techniques did not improve the performance of the CNN model for our dataset. We have also used ensemble methods to solve the high variance that exists in networks when working with small datasets. Finally, we were able to design a model that classifies the beans into their quality grades with an accuracy of 89.01% on the test dataset.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.