Animals across species compete for limited resources. While in some species competition behavior is solely based on own abilities, others assess their opponents to facilitate these interactions. Using cues and communication signals, contestants gather information about their opponent, adjust their behavior accordingly, and can thereby avoid high costs of escalating fights. We tracked electrocommunication signals, in particular “rises”, and agonistic behaviors of the gymnotiform electric fish Apteronotus leptorhynchus instaged competition experiments. A larger body-size relative to the opponent was the sole significant predictor for winners. Sex and the frequency of the continuously emitted electric field were only mildly influencing competition outcome. In males, correlations of body-size and winning were stronger than in females and, especially when losing against females, communication and agonistic interactions were enhanced, hinting towards males being more motivated to compete. Fish that lost competitions emitted the majority of rises, whereby their quantity depended on the competitors’ relative size and sex. The emission of rises was costly since it provoked ritualized biting or chasing behaviors by the other fish. Despite winners being accurately predictable based on rise numbers already after the initial 25 minutes, losers continued to emit rises. The number of rises emitted by losers and the duration of chasing behaviors depended in similar ways on physical attributes of contestants. The detailed evaluation of these correlations hint towards A. leptorhynchus adjusting their competition behavior according to mutual assessment, where rises could signal a loser's motivation to continue assessment through ritualized fighting.
Lysine residues are one of the main sites for posttranslational modifications of proteins, and lysine ubiquitination of the Machado-Joseph disease protein ataxin-3 is implicated in its cellular function and polyglutamine expansion-dependent toxicity. Despite previously undertaken efforts, the individual roles of specific lysine residues of the ataxin-3 sequence are not entirely understood and demand further analysis. By retaining single lysine residues of otherwise lysine-free wild-type and polyglutamine-expanded ataxin-3, we assessed the effects of a site-limited modifiability on ataxin-3 protein levels, aggregation propensity, localization, and stability. We confirmed earlier findings that levels of lysine-free ataxin-3 are reduced due to its decreased stability, which led to a diminished load of SDS-insoluble species of its polyglutamine-expanded form. The isolated presence of several single lysine residues within the N-terminus of polyglutamine-expanded ataxin-3 significantly restored its aggregate levels, with highest fold changes induced by the presence of lysine 8 or lysine 85, respectively. Ataxin-3 lacking all lysine residues presented a slightly increased nuclear localization, which was counteracted by the reintroduction of lysine 85, whereas presence of either lysine 8 or lysine 85 led to a significantly higher ataxin-3 stability. Moreover, lysine-free ataxin-3 showed increased toxicity and binding to K48-linked polyubiquitin chains, whereas the reintroduction of lysine 85, located between the ubiquitin-binding sites 1 and 2 of ataxin-3, normalized its binding affinity. Overall, our data highlight the relevance of lysine residues 8 and 85 of ataxin-3 and encourage further analyses, to evaluate the potential of modulating posttranslational modifications of these sites for influencing pathophysiological characteristics of the Machado-Joseph disease protein.
Social animals establish dominance hierarchies to regulate access to resources. Although communication signals could reduce costs in negotiating dominance, their detailed role and emergence in non-mammalian vertebrates is not well researched. We tracked electrocommunication signals and agonistic behaviors of the gymnotiform fish Apteronotus leptorhynchus in staged competition experiments. Subordinates emitted the majority of so called "rises" in dependence on the competitor's relative size and sex. Rises provoked ritualized biting or chasing behaviors by dominant fish. Already after 25 minutes losers were accurately predictable based on rise numbers, but they continued to emit rises. We suggest the interplay between communication and aggression to fine tune relative dominance without questioning dominance rank. This communication system regulates the skewness of access to resources within a dominance hierarchy and allows A. leptorhynchus to populate neotropical rivers with high abundances.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.