P300 spellers are mainly composed of an interface, by which alphanumerical characters are presented to users, and a classification system, which identifies the target character by using acquired EEG data. In this study, we proposed modifications both to the interface and to the classification system, in order to reduce the number of required stimulus repetitions and consequently boost the information transfer rate. We initially incorporated a custom-built dictionary into the classification system, and conducted a study on 14 healthy subjects who copy-spelled 15 four letter words. Incorporating the dictionary, the mean accuracy at five trials increased from 72.86% to 95.71%. To further increase the system performance, we first validated the hypothesis that for a conventional P300 system, most target-error pairs lie on the same row or column. Then based on the validated hypothesis, we adjusted letter positions on the well-known from A to Z interface. The same subjects spelled the same 15 words using the modified interface as well, and the mean information transfer rate at two trials reached 55.32 bits/min.
The liver comprises cell layers of hepatocytes called trabeculae, which are separated by vascular sinusoids. Understanding the structure of hepatic trabeculae and liver sinusoids in hematoxylin and eosin (HE)-stained liver specimens is important for the differential diagnosis of liver diseases. In this study, we develop an approach to extracting liver sinusoids from HE-stained images. The proposed approach involves: 1) a new orientation-selective filter (OS filter) for edge enhancement and image denoising, 2) the clustering of image pixels to identify candidate sinusoids, and 3) a classification procedure that discards unlikely candidates and selects the final sinusoid areas. Experimental studies using a database of 16 images with a resolution of 512 × 512 pixels showed that the proposed approach could segment liver sinusoid pixels with 81% of specificity and 94% of sensitivity. A comparison with a method based on bilateral filters showed that this method improved the sensitivity for all images with an average improvement of 4% and no difference in specificity. The results were presented to a group of pathologists and they confirmed that the images were highly representative of the tissue morphology features.
Abstract. This paper proposes a digital image analysis method to support quantitative pathology by automatically segmenting the hepatocyte structure and quantifying its morphological features. To structurally analyze histopathological hepatic images, we isolate the trabeculae by extracting the sinusoids, fat droplets, and stromata. We then measure the morphological features of the extracted trabeculae, divide the image into cords, and calculate the feature values of the local cords. We propose a method of calculating the nuclear-cytoplasmic ratio, nuclear density, and number of layers using the local cords. Furthermore, we evaluate the effectiveness of the proposed method using surgical specimens. The proposed method was found to be an effective method for the quantification of the Edmondson grade.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.