Soil respiration rates were measured monthly (from April 2007 to March 2008) under four adjacent coniferous plantation sites [Oriental spruce (Picea orientalis L.), Austrian pine (Pinus nigra Arnold), Turkish fir (Abies bornmulleriana L.), and Scots pine (Pinus sylvestris L.)] and adjacent natural Sessile oak forest (Quercus petraea L.) in Belgrad Forest-Istanbul/Turkey. Also, soil moisture, soil temperature, and fine root biomass were determined to identify the underlying environmental variables among sites which are most likely causing differences in soil respiration. Mean annual soil moisture was determined to be between 6.3 % and 8.1 %, and mean annual temperature ranged from 13.0°C to 14.2°C under all species. Mean annual fine root biomass changed between 368.09 g/m(2) and 883.71 g/m(2) indicating significant differences among species. Except May 2007, monthly soil respiration rates show significantly difference among species. However, focusing on tree species, differences of mean annual respiration rates did not differ significantly. Mean annual soil respiration ranged from 0.56 to 1.09 g C/m(2)/day. The highest rates of soil respiration reached on autumn months and the lowest rates were determined on summer season. Soil temperature, soil moisture, and fine root biomass explain mean annual soil respiration rates at the highest under Austrian pine (R (2) = 0.562) and the lowest (R (2) = 0.223) under Turkish fir.
The aim of this study was to evaluate the changes in forest road pavement bearing capacity (PBC) depending on meteorological conditions, traffic effects and horizontal curve parameters for a year on a monthly basis. Within this context, two different roads were investigated and measured with dynamic cone-penetrometer. The total number of the measurement points was 265 for traffic-restricted road (road no: 001-RN1) and 315 for open traffic road (road no: 005-RN2). In the study, three multiple regression models were developed to estimate PBC values on forest road. According to Model1, which was developed to estimate PBC values depending on vehicle traffic and on meteorological factors for alignment section of the RN2, the adjusted R 2 was found to be 0.635. In Model2 for the curve section of the RN2, the adjusted R 2 was found to be 0.711. Model3 for RN1 depending on meteorological factors demonstrated that the accuracy of PBC estimation had a high adjusted R 2 , which was 0.952. In conclusion, PBC values can be estimated at high accuracy. Furthermore, traffic load has a strong effect on PBC. On the other hand, temperature has an important negative effect on the variation in PBC on RN1.
The effects of tree thinning on soil respiration and microbial respiration in a Hungarian oak (Quercus frainetto Ten.) forest were examined over a 2-year period (2010–12). Tree density was reduced to 50% of the basal area. The research focus was on the main factors influencing the soil respiration (RS) and microbial respiration in the forest floor (RFFM) and in the soil (RSM): soil temperature, moisture, carbon (C), nitrogen (N), and pH; groundcover biomass (GC); forest floor mass, carbon and nitrogen; and fine root biomass. RS was measured twice monthly with the soda-lime method, and the incubation method was used to measure RSM and RFFM separately. The results were evaluated annually and over the 2-year research period. Correlation and stepwise regression analyses were used for statistical evaluation.
Annual mean RS was significantly higher in thinned plots (1.92 g C m–2 day–1) than in the control plots (1.79 g C m–2 day–1). Over the 2-year research period, RS was higher in the thinned plots, and had linear correlations with GC, soil temperature and fine root biomass. GC was found to be the main factor that determined RS.
The control plots had significantly higher RSM in first year, whereas the thinned plots had significantly higher RSM in second year; no significant difference was found over the 2-year research period. RFFM was significantly higher in the control plots than in the thinned plots, by 84% in the second year and by 34% over the 2-year study period. RSM had a linear correlation with soil N content and soil pH, whereas RFFM had linear correlations with C concentration and the C : N ratio of the forest floor in the thinned plots.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.