Birçok farklı sektörde metin halinde bulunan verilerden istenilen bilgilerin elde edilmesi için doğal dil işleme, metin madenciliği ve derin öğrenme yöntemleri kullanılmaktadır. Son zamanlarda artan Ar-Ge proje sayıları ve farklılaşan proje faaliyet alanları ile birlikte Ar-Ge projelerinin ait olduğu araştırma alanlarının belirlenmesi ve bu araştırma alanlarına uygun hakemlerin tespitinde yaşanan sıkıntılar nedeniyle projelerin desteklenme süreçleri olumsuz etkilenebilmektedir. Bu makalede, Ar-Ge projelerinin sınıflandırılması amacıyla öncelikli olarak çalışmanın gerçekleştirildiği veri tabanındaki veriler temizlenmiş ve doğal dil tekniklerinden biri olan “Word2Vec” kelime temsili yöntemi ile otomatik özellik öğrenme yaklaşımı kullanılarak özelliklerin sınıflandırılması amacıyla Evrişimsel Sinir Ağları (CNN-Convolutional Neural Network) modelleri oluşturulmaya çalışılmıştır. TUBİTAK Dergipark sitesinden seçilen ve sınıfları belli olan Ar-Ge projeleri ve Ar-Ge proje içeriğine sahip makalelerden oluşan veri kümesi üzerinde yapılan deneysel çalışmalardan elde edilen değerlendirme sonuçları ile diğer klasik algoritmalar karşılaştırılmış ve özellikle Word2Vec modellerine sahip CNN’lerin daha etkili sonuçları ürettiği birçok performans parametresi ile gösterilmiştir.
The evaluation of Research and Development (R&D) projects consists of many steps depending on the government funding agencies and the support program. It is observed that the reviewer evaluation reports have a crucial impact on the support decisions of the projects. In this study, a decision support system (DSS), namely R&D Reviewer, is developed to help the decision-makers with the assignment of the appropriate reviewer to R&D project proposals. It is aimed to create an artificial intelligence-based decision support system that enables the classification of Turkish R&D projects with natural language processing (NLP) methods. Furthermore, we examine the reviewer ranking process by using fuzzy multi-criteria decision-making methods. The data in the database is processed primarily to classify the R&D projects and the word embedding model NLP, “Word2Vec”. Also, we designed the Convolutional Neural Network (CNN) model to select the features by using the automatic feature learning approach. Moreover, we incorporate a new integrated hesitant fuzzy VIKOR and TOPSIS methodology into the developed DSS for the reviewer ranking process.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.