The number of individuals suffering from type 2 diabetes is dramatically increasing worldwide, resulting in an increasing burden on society and rising healthcare costs. With increasing evidence supporting lifestyle intervention programs to reduce type 2 diabetes, and the use of scenario simulations for policy support, there is an opportunity to improve population interventions based upon cost–benefit analysis of especially complex lifestyle intervention programs through dynamic simulations. In this article, we used the System Dynamics (SD) modeling methodology aiming to develop a simulation model for policy makers and health professionals to gain a clear understanding of the patient journey of type 2 diabetes mellitus and to assess the impact of lifestyle intervention programs on total cost for society associated with prevention and lifestyle treatment of pre-diabetes and type 2 diabetes in The Netherlands. System dynamics describes underlying structure in the form of causal relationships, stocks, flows, and delays to explore behavior and simulate scenarios, in order to prescribe intervention programs. The methodology has the opportunity to estimate and simulate the consequences of unforeseen interactions in order to prescribe intervention programs based on scenarios tested through “what-if” experiments. First, the extensive knowledge of diabetes, current available data on the type 2 diabetes population, lifestyle intervention programs, and associated cost in The Netherlands were captured in one simulation model. Next, the relationships between leverage points on the growth of type 2 diabetes population were based upon available data. Subsequently, the cost and benefits of future lifestyle intervention programs on reducing diabetes were simulated, identifying the need for an integrated adaptive design of lifestyle programs while collecting the appropriate data over time. The strengths and limitations of scenario simulations of complex lifestyle intervention programs to improve the (cost)effectiveness of these programs to reduce diabetes in a more sustainable way compared to usual care are discussed.
The prevalence of non-alcoholic steatohepatitis (NASH) is rapidly increasing and associated with cardiovascular disease (CVD), the major cause of mortality in NASH patients. Although sharing common risk factors, the mechanisms by which NASH may directly contribute to the development to CVD remain poorly understood. The aim of this study is to gain insight into key molecular processes of NASH that drive atherosclerosis development. Thereto, a time-course study was performed in Ldlr−/−.Leiden mice fed a high-fat diet to induce NASH and atherosclerosis. The effects on NASH and atherosclerosis were assessed and transcriptome analysis was performed. Ldlr−/−.Leiden mice developed obesity, hyperlipidemia and insulin resistance, with steatosis and hepatic inflammation preceding atherosclerosis development. Transcriptome analysis revealed a time-dependent increase in pathways related to NASH and fibrosis followed by an increase in pro-atherogenic processes in the aorta. Gene regulatory network analysis identified specific liver regulators related to lipid metabolism (SC5D, LCAT and HMGCR), inflammation (IL1A) and fibrosis (PDGF, COL3A1), linked to a set of aorta target genes related to vascular inflammation (TNFA) and atherosclerosis signaling (CCL2 and FDFT1). The present study reveals pathogenic liver processes that precede atherosclerosis development and identifies hepatic key regulators driving the atherogenic pathways and regulators in the aorta.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.