Background
COVID-19 mortality, excess mortality, deaths per million population (DPM), infection fatality ratio (IFR) and case fatality ratio (CFR) are reported and compared for many countries globally. These measures may appear objective, however, they should be interpreted with caution.
Aim
We examined reported COVID-19-related mortality in Belgium from 9 March 2020 to 28 June 2020, placing it against the background of excess mortality and compared the DPM and IFR between countries and within subgroups.
Methods
The relation between COVID-19-related mortality and excess mortality was evaluated by comparing COVID-19 mortality and the difference between observed and weekly average predictions of all-cause mortality. DPM were evaluated using demographic data of the Belgian population. The number of infections was estimated by a stochastic compartmental model. The IFR was estimated using a delay distribution between infection and death.
Results
In the study period, 9,621 COVID-19-related deaths were reported, which is close to the excess mortality estimated using weekly averages (8,985 deaths). This translates to 837 DPM and an IFR of 1.5% in the general population. Both DPM and IFR increase with age and are substantially larger in the nursing home population.
Discussion
During the first pandemic wave, Belgium had no discrepancy between COVID-19-related mortality and excess mortality. In light of this close agreement, it is useful to consider the DPM and IFR, which are both age, sex, and nursing home population-dependent. Comparison of COVID-19 mortality between countries should rather be based on excess mortality than on COVID-19-related mortality.
In response to the ongoing COVID-19 pandemic, several countries adopted measures of social distancing to a different degree. For many countries, after successfully curbing the initial wave, lockdown measures were gradually lifted. In Belgium, such relief started on May 4th with phase 1, followed by several subsequent phases over the next few weeks.
We analysed the expected impact of relaxing stringent lockdown measures taken according to the phased Belgian exit strategy. We developed a stochastic, data-informed, meta-population model that accounts for mixing and mobility of the age-structured population of Belgium. The model is calibrated to daily hospitalization data and serological data and is able to reproduce the outbreak at the national level. We consider different scenarios for relieving the lockdown, quantified in terms of relative reductions in pre-pandemic social mixing and mobility. We validate our assumptions by making comparisons with social contact data collected during and after the lockdown.
Our model is able to successfully describe the initial wave of COVID-19 in Belgium and identifies interactions during leisure/other activities as pivotal in the exit strategy. Indeed, we find a smaller impact of school re-openings as compared to restarting leisure activities and re-openings of work places. We also assess the impact of case isolation of new (suspected) infections, and find that it allows re-establishing relatively more social interactions while still ensuring epidemic control. Scenarios predicting a second wave of hospitalizations were not observed, suggesting that the per-contact probability of infection has changed with respect to the pre-lockdown period.
Community contacts are found to be most influential, followed by professional contacts and school contacts, respectively, for an impending second wave of COVID-19. Regular re-assessment is crucial to adjust to evolving behavioral changes that can affect epidemic diffusion. In addition to social distancing, sufficient capacity for extensive testing and contact tracing is essential for successful mitigation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.