SARS-CoV-2 is the viral agent responsible for the pandemic that in the first months of 2020 caused about 400,000 deaths. Among compounds proposed to fight the SARS-CoV-2-related disease (COVID-19), tyrosine kinase inhibitors (TKIs), already effective in Philadelphia-positive acute lymphoblastic leukemia (Ph+ ALL) and chronic myeloid leukemia (CML), have been proposed on the basis of their antiviral action already demonstrated against SARS-CoV-1. Very few cases of COVID-19 have been reported in Ph+ ALL and in CML Italian cohorts; authors suggested that this low rate of infections might depend on the use of TKIs, but the biological causes of this phenomenon remain unknown. In this study, the CML model was used to test if TKIs would sustain or not the viral replication and if they could damage patient immunity. Firstly, the infection and replication rate of torquetenovirus (TTV), whose load is inversely proportional to the host immunological control, have been measured in CML patients receiving nilotinib. A very low percentage of subjects were infected at baseline, and TTV did not replicate or at least showed a low replication rate during the follow-up, with a mean load comparable to the measured one in healthy subjects. Then, after gene expression profiling experiments, we found that several "antiviral" genes, such as CD28 and IFN gamma, were upregulated, while genes with "proviral" action, such as ARG-1, CEACAM1, and FUT4, were less expressed during treatment with imatinib, thus demonstrating that TKIs are not detrimental from the immunological point of view. To sum up, our data could offer some biological explanations to the low COVID-19 occurrence in Ph+ ALL and CML patients and sustain the use of TKIs in COVID-19, as already proposed by several international ongoing studies.
COVID-19 is a medical emergency, with 20 % of patients presenting with severe clinical manifestations. From the pathogenetic point of view, COVID-19 mimics two other well-known diseases characterized by cytokine storm and hyper-activation of the immune response, with consequent organ damage: acute graft-versus-host disease (aGVHD) and macrophage activation syndrome (MAS). Hematologists are confident with these situations requiring a prompt therapeutic approach for switching off the uncontrolled cytokine release; here, we discuss pros and cons of drugs that are already employed in hematology in the light of their possible application in COVID-19. The most promising drugs might be: Ruxolitinib, a JAK1/2 inhibitor, with a rapid and powerful anticytokine effect, tyrosine kinase inhibitors (TKIs), with their good anti-inflammatory properties, and perhaps the anti-Cd26 antibody Begelomab. We also present immunological data from gene expression experiments where TKIs resulted effective anti-inflammatory and pro-immune drugs. A possible combined treatment algorithm for COVID-19 is here proposed.
Digital droplet PCR (ddPCR) is a recent version of quantitative PCR (QT-PCR), useful for measuring gene expression, doing clonality assays and detecting hot spot mutations. In respect of QT-PCR, ddPCR is more sensitive, does not need any reference curve and can quantify one quarter of samples already defined as “positive but not quantifiable”. In the IgH and TCR clonality assessment, ddPCR recapitulates the allele-specific oligonucleotide PCR (ASO-PCR), being not adapt for detecting clonal evolution, that, on the contrary, does not represent a pitfall for the next generation sequencing (NGS) technique. Differently from NGS, ddPCR is not able to sequence the whole gene, but it is useful, cheaper, and less time-consuming when hot spot mutations are the targets, such as occurs with IDH1, IDH2, NPM1 in acute leukemias or T315I mutation in Philadelphia-positive leukemias or JAK2 in chronic myeloproliferative neoplasms. Further versions of ddPCR, that combine different primers/probes fluorescences and concentrations, allow measuring up to four targets in the same PCR reaction, sparing material, time, and money. ddPCR is also useful for quantitating BCR-ABL1 fusion gene, WT1 expression, donor chimerism, and minimal residual disease, so helping physicians to realize that “patient-tailored therapy” that is the aim of the modern hematology.
ObjectiveTo investigate the prognostic significance of concomitant autoimmune diseases (ADs) in myeloproliferative neoplasms (MPNs). Methods 435 subjects with a diagnosis of MPNs were included in this observational single institution longitudinal study. Of them, 34 patients presented an overt AD at diagnosis of MPN. Clinical presenting features, progression-free and overall survival were compared between MPN subgroups in relation to co-existence of AD at diagnosis of MPN. Results Compared to cases without ADs, the subjects with ADs were significantly younger, had lower haemoglobin and haematocrit levels and more frequently presented with splenomegaly. The clinical and biological features associated to progression-free and overall survival were: age, presence of splenomegaly, histotype (MF vs. PV vs. ET), anaemia, high platelet count and presence of any AD at diagnosis of MPN. The age-adjusted hazard ratio (HR) of progressionfor the presence of AD at diagnosis of MPN was 2.76. Overall survival was not significantly associated to AD at diagnosis, but the HR of progression for the presence of AD at diagnosis of MPN was 2.18. ConclusionA possible common genetic predisposition, the inflammatory bone marrow microenvironment and the activation of theJAK/STAT pathway could be considered as responsible for the observed association between MPNs and ADs.
Notwithstanding the introduction of Tyrosine Kinase Inhibitors (TKIs) revolutionized the outcome of Chronic Myeloid Leukemia (CML), one third of patients still suspends treatment for failure response. Recent research demonstrated that several BCR/ABL1-independent mechanisms can sustain resistance, but the relationship between these mechanisms and the outcome has not yet been fully understood. This study was designed to evaluate in a “real-life” setting if a change of expression of several genes involved in the WNT/BETA-CATENIN, JAK-STAT, and POLYCOMB pathways might condition the outcome of CML patients receiving TKIs. Thus, the expression of 255 genes, related to the aforementioned pathways, was measured by quantitative PCR after 6 months of therapy and compared with levels observed at diagnosis in 11 CML patients, in order to find possible correlations with quality of response to treatment and event-free-survival (EFS). These results were then re-analyzed by the principal component method (PCA) for tempting to better cluster resistant cases. After 12 months of therapy, 6 patients achieved an optimal response and 5 were “resistant;” after application of both statistical methods, it was evident that in all pathways a significant overall up-regulation occurred, and that WNT was the pathway mostly responsible for the TKIs resistance. Indeed, 100% of patients with a “low” up-regulation of this pathway achieved an optimal response vs. 33% of those who showed a “high” gene over-expression ( p = 0.016). Analogously, the 24-months EFS resulted significantly influenced by the degree of up-regulation of the WNT signaling: all patients with a “low” up-regulation were event-free vs. 33% of those who presented a “high” gene expression ( p = 0.05). In particular, the PCA analysis confirmed the role of WNT pathway and showed that the most significantly up-regulated genes with negative prognostic value were DKK, WNT6, WISP1, and FZD8. In conclusion, our results sustain the need of a wide and multitasking approach in order to understand the resistance mechanisms in CML.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.