The luminescence of CuInS 2 quantum dots (QDs) is slower and spectrally broader than that of many other types of QDs. The origin of this anomalous behavior is still under debate. Single-QD experiments could help settle this debate, but studies by different groups have yielded conflicting results. Here, we study the photophysics of single core-only CuInS 2 and core/shell CuInS 2 /CdS QDs. Both types of single QDs exhibit broad PL spectra with fluctuating peak position and single-exponential photoluminescence decay with a slow but fluctuating lifetime. Spectral diffusion of CuInS 2 -based QDs is qualitatively and quantitatively different from CdSe-based QDs. The differences reflect the dipole moment of the CuInS 2 excited state and hole localization on a preferred site in the QD. Our results unravel the highly dynamic photophysics of CuInS 2 QDs and highlight the power of the analysis of single-QD property fluctuations.
The quest for atomically precise synthesis of colloidal semiconductor nanostructures has attracted increasing attention in recent years and remains a formidable challenge. Nevertheless, atomically precise clusters of semiconductors, known as magic-size clusters (MSCs), are readily accessible. Ultrathin one-dimensional nanowires and two-dimensional nanoplatelets and nanosheets can also be categorized as magic-size nanocrystals (MSNCs). Further, the magic-size growth regime has been recently extended into the size range of colloidal QDs (up to 3.5 nm). Nevertheless, the underlying reasons for the enhanced stability of magic-size nanostructures and their formation mechanisms remain obscure. In this Perspective, we address these intriguing questions by critically analyzing the currently available knowledge on the formation and stability of both MSCs and MSNCs (0D, 1D, and 2D). We conclude that research on magic-size colloidal nanostructures is still in its infancy, and many fundamental questions remain unanswered. Nonetheless, we identify several correlations between the formation of MSCs and 0D, 1D and 2D MSNSs. From our analysis, it appears that the “magic” originates from the complexity of a dynamic and multivariate system running under reaction control. Under conditions that impose a prohibitively high energy barrier for classical nucleation and growth, the reaction proceeds through a complex and dynamic potential landscape, searching for the pathway with the lowest energy barrier, thereby sequentially forming metastable products as it jumps from one local minimum to the next until it eventually becomes trapped into a minimum that is too deep with respect to the available thermal energy. The intricacies of this complex interplay between several synergistic and antagonistic processes are, however, not yet understood and should be further investigated by carefully designed experiments combining multiple complementary in situ characterization techniques.
Despite recent advances, the synthesis of colloidal InSb quantum dots (QDs) remains underdeveloped, mostly due to the lack of suitable precursors. In this work, we use Lewis acid–base interactions between Sb(III) and In(III) species formed at room temperature in situ from commercially available compounds ( viz. , InCl 3 , Sb[NMe 2 ] 3 and a primary alkylamine) to obtain InSb adduct complexes. These complexes are successfully used as precursors for the synthesis of colloidal InSb QDs ranging from 2.8 to 18.2 nm in diameter by fast coreduction at sufficiently high temperatures (≥230 °C). Our findings allow us to propose a formation mechanism for the QDs synthesized in our work, which is based on a nonclassical nucleation event, followed by aggregative growth. This yields ensembles with multimodal size distributions, which can be fractionated in subensembles with relatively narrow polydispersity by postsynthetic size fractionation. InSb QDs with diameters below 7.0 nm have the zinc blende crystal structure, while ensembles of larger QDs (≥10 nm) consist of a mixture of wurtzite and zinc blende QDs. The QDs exhibit photoluminescence with small Stokes shifts and short radiative lifetimes, implying that the emission is due to band-edge recombination and that the direct nature of the bandgap of bulk InSb is preserved in InSb QDs. Finally, we constructed a sizing curve correlating the peak position of the lowest energy absorption transition with the QD diameters, which shows that the band gap of colloidal InSb QDs increases with size reduction following a 1/ d dependence.
Semiconductor copper indium sulfide quantum dots are emerging as promising alternatives to cadmium-and lead-based chalcogenides in solar cells, luminescent solar concentrators, and deep-tissue bioimaging due to their inherently lower toxicity and outstanding photoluminescence properties. However, the nature of their emission pathways remains a subject of debate. Using lowtemperature single quantum dot spectroscopy on core−shell copper indium sulfide nanocrystals, we observe two subpopulations of particles with distinct spectral features. The first class shows sharp resolution-limited emission lines that are attributed to zerophonon recombination lines of a long-lived band-edge exciton. Such emission results from the perfect passivation of the copper indium sulfide core by the zinc sulfide shell and points to an inversion in the band-edge hole levels. The second class exhibits ultrabroad spectra regardless of the temperature, which is a signature of the extrinsic self-trapping of the hole assisted by defects in imperfectly passivated quantum dots.
Despite recent advances, the synthesis of colloidal InSb quantum dots (QDs) remains underdeveloped, mostly due to the lack of suitable precursors. In this work, we use Lewis acid−base interactions between Sb(III) and In(III) species formed at room temperature in situ from commercially available compounds (viz., InCl 3 , Sb[NMe 2 ] 3 and a primary alkylamine) to obtain InSb adduct complexes. These complexes are successfully used as precursors for the synthesis of colloidal InSb QDs ranging from 2.8 to 18.2 nm in diameter by fast coreduction at sufficiently high temperatures (≥230°C). Our findings allow us to propose a formation mechanism for the QDs synthesized in our work, which is based on a nonclassical nucleation event, followed by aggregative growth. This yields ensembles with multimodal size distributions, which can be fractionated in subensembles with relatively narrow polydispersity by postsynthetic size fractionation. InSb QDs with diameters below 7.0 nm have the zinc blende crystal structure, while ensembles of larger QDs (≥10 nm) consist of a mixture of wurtzite and zinc blende QDs. The QDs exhibit photoluminescence with small Stokes shifts and short radiative lifetimes, implying that the emission is due to band-edge recombination and that the direct nature of the bandgap of bulk InSb is preserved in InSb QDs. Finally, we constructed a sizing curve correlating the peak position of the lowest energy absorption transition with the QD diameters, which shows that the band gap of colloidal InSb QDs increases with size reduction following a 1/d dependence.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.