The role of the steplength selection strategies in gradient methods has been widely investigated in the last decades. Starting from the work of Barzilai and Borwein (1988), many efficient steplength rules have been designed, that contributed to make the gradient approaches an effective tool for the large-scale optimization problems arising in important real-world applications. Most of these steplength rules have been thought in unconstrained optimization, with the aim of exploiting some second-order information for achieving a fast annihilation of the gradient of the objective function. However, these rules are successfully used also within gradient projection methods for constrained optimization, though, to our knowledge, a detailed analysis of the effects of the constraints on the steplength selections is still not available. In this work we investigate how the presence of the box constraints affects the spectral properties of the Barzilai-Borwein rules in quadratic programming problems. The proposed analysis suggests the introduction of new steplength selection strategies specifically designed for taking account of the active constraints at each iteration. The results of a set of numerical experiments show the effectiveness of the new rules with respect to other state of the art steplength selections and their potential usefulness also in case of box-constrained non-quadratic optimization problems.
In 1988, Barzilai and Borwein published a pioneering paper which opened the way to inexpensively accelerate first-order. In more detail, in the framework of unconstrained optimization, Barzilai and Borwein developed two strategies to select the step length in gradient descent methods with the aim of encoding some second-order information of the problem without computing and/or employing the Hessian matrix of the objective function. Starting from these ideas, several efficient step length techniques have been suggested in the last decades in order to make gradient descent methods more and also more appealing for problems which handle large-scale data and require realtime solutions. Typically, these new step length selection rules have been tuned in the quadratic unconstrained framework for sweeping the spectrum of the Hessian matrix, and then applied also to nonquadratic constrained problems, without any substantial modification, by showing them to be very effective anyway. In this paper, we deeply analyze how, in quadratic and nonquadratic minimization problems, the presence of a feasible region, expressed by a single linear equality constraint together with lower and upper bounds, influences the spectral properties of the original Barzilai-Borwein (BB) rules, generalizing recent results provided for box-constrained quadratic problems. This analysis gives rise to modified BB approaches able not only to capture second-order information but also to exploit the nature of the feasible region. We show the benefits gained by the new step length rules on a set of test problems arising also from machine learning and image processing applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.