Today, chemical bath deposited (CBD) Zn(S,O) is used at the industrial level in Cu(In,Ga)Se 2 solar cells technology. The state-of-the-art recipes of sulfur-based buffer layers use thiourea as sulfide ions precursor and ammonia as complexing agent. However, such formulations require high concentrations of reactants, deposition temperatures between 60°C and 80°C with the problem of ammonia losses by evaporation and large water consumption. In this work, a novel bath chemistry for Zn(S,O) buffer layer deposition is developed where the thiourea is replaced by thioacetic acid as a sulfur precursor. The use of this compound allows the photochemical growth of a dense and homogenous Zn(S,O) layer on CIGSe absorbers. The main advantages of this solution compared to classical CBD-Zn(S,O) bath are the deposition occurs at room temperature, the concentration of chemical precursors is 6 times lower, no use of a complexing agent such as ammonia, the reuse of the same bath at least for 4 consecutive times. The effect of the deposition time, the incident light power during deposition, and the successive use of the solutions on the thickness and composition of the film is discussed by means of scanning electron microscopy, and X-ray photoelectron spectroscopy analyses. The photovoltaic performance shows conversion efficiencies similar to the classical thiourea/ammonia based process.
In this work we report the electrodeposition parameters of Sn-graphene films in aqueous solutions and silicon films in propylene carbonate. The galvanostatic electrodeposition of tin-graphene films from a sulfate-based acidic solution on copper substrates has been studied evaluating the effect of stirring on the morphology and the electrochemical performance. SEM analysis of films deposited galvanostatically at -10 mA.cm−2 for 20 minutes at 25 °C reveals that electrodeposition is suitable to generate continuous and homogeneous films with thickness values in the micrometer range. XRD analysis shows many intermetallic Cu-Sn crystalline phases are formed, as opposed to a pure amorphous tin layer. So far, electrochemical characterization has only been performed over a short number of charge-discharge cycles. The galvanostatic electrodeposition of silicon from propylene carbonate in galvanostatic mode has been carried out, but is currently extremely challenging to obtain continuous and homogeneous films. The XRD characterization has suggested the possible presence of amorphous phases in the films deposited at -1.0 mA.cm-2 for 30 minutes at 25 °C.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.