Familial hemiplegic migraine, episodic ataxia type 2 (EA2), and spinocerebellar ataxia type 6 are allelic disorders of the CACNA1A gene (coding for the alpha(1A) subunit of P/Q calcium channels), usually associated with different types of mutations (missense, protein truncating, and expansion, respectively). However, the finding of expansion and missense mutations in patients with EA2 has blurred this genotype-phenotype correlation. We report the first functional analysis of a new missense mutation, associated with an EA2 phenotype-that is, T-->C transition of nt 4747 in exon 28, predicted to change a highly conserved phenylalanine residue to a serine at codon 1491, located in the putative transmembrane segment S6 of domain III. Patch-clamp recording in HEK 293 cells, coexpressing the mutagenized human alpha(1A-2) subunit, together with human beta(4) and alpha(2)delta subunits, showed that channel activity was completely abolished, although the mutated protein is expressed in the cell. These results indicate that a complete loss of P/Q channel function is the mechanism underlying EA2, whether due to truncating or to missense mutations.
Ataxin-1 (ATX1), a human protein responsible for spinocerebellar ataxia type 1 in humans, shares a region of homology, named AXH module, with the apparently unrelated transcription factor HBP1. Here, we describe the ¢rst characterisation of the AXH module in terms of its structural properties and stability. By producing protein constructs spanning the AXH modules of ATX1 and HBP1 and by comparing their properties, we have identi¢ed the minimal region su⁄cient for forming independently folded units (domains). Knowledge of the AXH domain boundaries allows us to map many of the interactions of ATX1 with other molecules onto the AXH module. We further show that the AXH of ATX1 is a dimerisation domain and is able to recognise RNA with the same nucleotide preference previously described for the full-length protein. AXH is therefore a novel protein^protein and RNA binding motif.
Interleukin-17 (IL-17) is a proinflammatory cytokine produced, although not exclusively, by T helper 17 recently identified as a distinct T helper lineage mediating tissue inflammation. IL-17 is known to be involved in a number of chronic disorders although the mechanisms regulating its production in inflammatory disease are still unclear. The beneficial properties of the polyphenolic compound resveratrol including its anti-inflammatory, antioxidant, and antitumor effects, its role in the aging process and in the prevention of heart and neurodegenerative diseases are well-known. In addition, derivatives of resveratrol, including glucosylated molecules as polydatin have been linked to similar beneficial effects. We have investigated the effects of resveratrol and polydatin on the in vitro production of IL-17 in a model of inflammation in vitro. The results obtained by activated human peripheral blood mononuclear cells, stimulated with anti-CD3/anti-CD28 monoclonal antibodies and treated with these polyphenolic compounds at different concentrations show that both decrease IL-17 production in a concentration-dependent manner. This study confirms the anti-inflammatory activity of resveratrol and its derivatives and suggests a potential clinical relevance in the therapy of inflammatory diseases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.